Highlights d Photoactivatable (PA)-Tet-OFF/ON systems are developed in mammalian cells d The PA-Tet-OFF/ON activities are dually controlled by blue light and Dox d The PA-Tet-OFF/ON allows precise temporal and spatial control of gene expression d The PA-Tet-OFF/ON can be applied to various cell types in vitro and in vivo
Summary Light-inducible gene expression systems represent powerful methods for studying the functional roles of dynamic gene expression. Here, we developed an optimized light-inducible Gal4/UAS gene expression system for mammalian cells. We designed photoactivatable (PA)-Gal4 transcriptional activators based on the concept of split transcription factors, in which light-dependent interactions between Cry2-CIB1 PA-protein interaction modules can reconstitute a split Gal4 DNA-binding domain and p65 transcription activation domain. We developed a set of PA-Gal4 transcriptional activators (PA-Gal4cc), which differ in terms of induced gene expression levels following pulsed or prolonged light exposure, and which have different activation/deactivation kinetics. These systems offer optogenetic tools for the precise manipulation of gene expression at fine spatiotemporal resolution in mammalian cells.
Innate and goal-directed movements require a high-degree of trunk and appendicular muscle coordination to preserve body stability while ensuring the correct execution of the motor action. The spinal neural circuits underlying motor execution and postural stability are finely modulated by propriospinal, sensory and descending feedback, yet how distinct spinal neuron populations cooperate to control body stability and limb coordination remains unclear. Here, we identified a spinal microcircuit composed of V2 lineage-derived excitatory (V2a) and inhibitory (V2b) neurons that together coordinate ipsilateral body movements during locomotion. Inactivation of the entire V2 neuron lineage does not impair intralimb coordination but destabilizes body balance and ipsilateral limb coupling, causing mice to adopt a compensatory festinating gait and be unable to execute skilled locomotor tasks. Taken together our data suggest that during locomotion the excitatory V2a and inhibitory V2b neurons act antagonistically to control intralimb coordination, and synergistically to coordinate forelimb and hindlimb movements. Thus, we suggest a new circuit architecture, by which neurons with distinct neurotransmitter identities employ a dual-mode of operation, exerting either synergistic or opposing functions to control different facets of the same motor behavior.
The Gal4/UAS system is a versatile tool to manipulate exogenous gene expression of cells spatially and temporally in many model organisms. Many variations of light-controllable Gal4/UAS system are now available, following the development of photo-activatable (PA) molecular switches and integration of these tools. However, many PA-Gal4 transcription factors have undesired background transcription activities even in dark conditions, and this severely attenuates reliable light-controlled gene expression. Therefore, it is important to develop reliable PA-Gal4 transcription factors with robust light-induced gene expression and limited background activity. By optimization of synthetic PA-Gal4 transcription factors, we have validated configurations of Gal4 DNA biding domain, transcription activation domain and blue light-dependent dimer formation molecule Vivid (VVD), and applied types of transcription activation domains to develop a new PA-Gal4 transcription factor we have named eGAV (enhanced Gal4-VVD transcription factor). Background activity of eGAV in dark conditions was significantly lower than that of hGAVPO, a commonly used PA-Gal4 transcription factor, and maximum light-induced gene expression levels were also improved. Light-controlled gene expression was verified in cultured HEK293T cells with plasmid-transient transfections, and in mouse EpH4 cells with lentivirus vectormediated transduction. Furthermore, light-controlled eGAV-mediated transcription was confirmed in transfected neural stem cells and progenitors in developing and adult mouse brain and chick spinal cord, and in adult mouse hepatocytes, demonstrating that eGAV can be applied to a wide range of experimental systems and model organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.