Turbopump inducers often have swirling backflow under a wide range of flow rates because they are designed with a certain angle of attack even at the design point in order to attain high cavitation performance. When the flow rate is decreased, the backflow region extends upstream and may cause various problems by interacting with upstream elements. It is also known that the backflow vortex structure occurs in the shear layer between the main flow and the swirling backflow. Experimental studies on the backflow from an inducer have given us insight into the characteristics of backflow vortex structure, but the limited information has not lead to the complete understanding of the phenomena. Numerical studies based on Reynolds-averaged Navier-Stokes (RANS) computations usually deteriorate when the flow field of interest involves large-scale separations, as shown by a previous study by Tsujimoto et al. (2005). On the other hand, the numerical approach using the Large Eddy Simulation (LES) technique has the potential to predict unsteady flows and/or flow fields that include regions of large-scale separation much more accurately than RANS computations does in general. The present paper describes the application of the LES code developed by one of the authors (Kato) to further understand the backflow vortex structure at the inlet of an inducer. First, the internal flow of the inducer was simulated, as a way to evaluate the validity of the proposed method, under a wide range of inlet flow coefficients. The static pressure peformance and the length of the backflow region was compared with measured values, and good agreement was obtained. Second, using the validated LES code, the fundamental characteristics of the backflow vortex was investigated in detail. It was found that the backflow vortices are formed in a circumferentially twisted manner at the boundary between the swirling backflow and the straight inlet flow. Also, the backflow vortices rotate in the same direction as the inducer, but with half of the circumferential flow velocity in the backflow region. Another finding was that the backflow region expands toward the center of the flow field and the number of vortices decrease, as the flow coefficient decreases. To the best of our knowledge, this is the first computation of the backflow at the inducer inlet to achieve quantitative agreement with measured results, and give new findings to the complicated three-dimensional structure of the backflow, which was very limited under experimental studies.
In order to enhance the efficiency and reduce the manufacturing cost of steam turbine, combined main steam valve consisting of main stop valve and control valve in the same casing has been developed. Combined main steam valve with improved flow path at internal structure will reduce pressure loss. A downscale model test on air condition was conducted to verify pressure distribution characteristics. Experimental result and numerical result obtained by computational fluid dynamics (CFD) showed reasonable agreement in pressure loss and static pressure at each flow point within the design operation range. Main stop valve (SV) and control valve (CV) vibration characteristics tests were performed simultaneously for the stability verification of governing operation from start up to full load. We confirmed that CV aerodynamic added damping ratio was positive under all measured condition of CV stroke and pressure ratio, and self-excited vibration was not generated. We also confirmed that pressure fluctuation acting on main stop valve body was sufficiently small within the operation range. Meanwhile, in the case where pressure ratio or CV stroke deviated from the operation range, pressure fluctuation around main stop valve increased. Based on CFD result and detailed analysis of experimental result, it was found that steam flow along valve seat separates periodically, which revealed the mechanism of increasing pressure fluctuation around main stop valve. By reflecting on these results, the reliability of new combined main steam valve has substantially been enhanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.