Developing effective drug therapies for arrhythmic diseases is hampered by the fact that the same drug can work well in some individuals but not in others. Human induced pluripotent stem (iPS) cells have been vetted as useful tools for drug screening. However, cardioactive drugs have not been shown to have the same effects on iPS cell-derived human cardiomyocytes as on embryonic stem (ES) cell-derived cardiomyocytes or human cardiomyocytes in a clinical setting. Here we show that current cardioactive drugs affect the beating frequency and contractility of iPS cell-derived cardiomyocytes in much the same way as they do ES cell-derived cardiomyocytes, and the results were compatible with empirical results in the clinic. Thus, human iPS cells could become an attractive tool to investigate the effects of cardioactive drugs at the individual level and to screen for individually tailored drugs against cardiac arrhythmic diseases.
Background: MicroRNAs (miRNAs) regulate various biological processes through inhibiting the translation of RNA transcripts. Although miRNA-1 (miR-1) and miRNA-133 (miR-133) are abundantly expressed in the adult heart and involved in cardiac hypertrophy, the roles of these miRNAs in spontaneous myocardial differentiation are unknown.
Methods and Results:The levels of miR-1 and miR-133 in mouse embryonic stem (ES) cells were increased during spontaneous differentiation by 2-dimensional culture, but reduced during forced myocardial differentiation by a histone deacetylase inhibitor, trichostatin A. The overexpression of miR-1 or miR-133 by lentiviral infection reduced the expression of a cardiac-specific gene, Nkx2.5, during differentiation of ES cells. In addition, miR-1 also inhibited α-myosin heavy chain expression. The results of luciferase assays revealed that miR-1 recognizes and targets the 3' untranslated region of cyclin-dependent kinase-9 (Cdk9) in ES cells. Overexpression of miR-1 decreased the protein amounts of Cdk9 without affecting the mRNA levels, indicating that miR-1 post-transcriptionally inhibits Cdk9 translation. Conclusions: miR-1 and miR-133 may play significant roles in the myocardial differentiation of mouse ES cells, and Cdk9 may be involved in this process as a target of miR-1. (Circ J 2009; 73: 1492 -1497
A zinc finger protein GATA4 is one of the hypertrophy-responsive transcription factors and forms a complex with an intrinsic histone acetyltransferase, p300. Disruption of this complex results in the inhibition of cardiomyocyte hypertrophy and heart failure in vivo. By tandem affinity purification and mass spectrometric analyses, we identified cyclin-dependent kinase-9 (Cdk9) as a novel GATA4-binding partner. Cdk9 also formed a complex with p300 as well as GATA4 and cyclin T1. We showed that p300 was required for the interaction of GATA4 with Cdk9 and for the kinase activity of Cdk9. Conversely, Cdk9 kinase activity was required for the p300-induced transcriptional activities, DNA binding, and acetylation of GATA4. Furthermore, the kinase activity of Cdk9 was required for the phosphorylation of p300 as well as for cardiomyocyte hypertrophy. These findings demonstrate that Cdk9 forms a functional complex with the p300/GATA4 and is required for p300/GATA4-transcriptional pathway during cardiomyocyte hypertrophy.
Mouse iPS cells differentiate into cardiomyocytes in a cell line-dependent manner. TSA induces myocardial differentiation in mouse iPS cells and might be useful to overcome cell line variation in the differentiation efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.