High-quality magneto-optical ceramics (TbxY1−x)2O3 (x = 0.5–1.0) with a Bixbyite structure were extensively investigated for the first time. The total performances of these ceramics were far superior to those of commercial TGG (Tb3Ga5O12) crystal, which is regarded as the highest class of Faraday rotator material. In particular, the Verdet constant of Tb2O3 (when x = 1.0) ceramic was the largest—495 to 154 rad·T−1·m−1 in the wavelength range of 633 to 1064 nm, respectively. It was possible to further minimize the Faraday isolator device. The insertion loss of this ceramic was equivalent to that of the commercial TGG single crystal (0.04 dB), and its extinction ratio reached more than 42 dB, which is higher than the value for TGG crystal (35 dB). The thermal lens effect (1/f) was as small as 0.40 m−1 as measured by a 50 W fiber laser. The laser damage threshold of this ceramic was 18 J/cm2, which is 1.8 times larger than that of TGG, and it was not damaged during a power handling test using a pulsed laser (pulse width 50 ps, power density 78 MW/cm2) irradiated at 2 MHz for 7000 h.
We have succeeded for the first time in synthesizing an optical grade (TbY)O (X=0.5-1.0) ceramic Faraday rotator, which greatly exceeds the basic characteristics of the commercial terbium gallium garnet (TGG) (TbGaO) crystal. The Faraday rotation angle increased as the Tb concentration increased, and the Verdet constant increased from 2.1 (82 rad T m at X=0.5) to 3.8 times (154 rad T m at X=1.0) than the TGG single crystal, which is regarded as highest class. Therefore, it is possible to minimize the Faraday rotator length and the magnet in building an optical isolator. It was also confirmed that its optical quality was very comparable to the commercial TGG crystal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.