Given a large amount of table data, how can we find the tables that contain the contents we want? A naive search fails when the column names are ambiguous, such as if columns containing stock price information are named “Close” in one table and named “P” in another table.One way of dealing with this problem that has been gaining attention is the semantic annotation of table data columns by using canonical knowledge. While previous studies successfully dealt with this problem for specific types of table data such as web tables, it still remains for various other types of table data: (1) most approaches do not handle table data with numerical values, and (2) their predictive performance is not satisfactory.This paper presents a novel approach for table data annotation that combines a latent probabilistic model with multilabel classifiers. It features three advantages over previous approaches due to using highly predictive multi-label classifiers in the probabilistic computation of semantic annotation. (1) It is more versatile due to using multi-label classifiers in the probabilistic model, which enables various types of data such as numerical values to be supported. (2) It is more accurate due to the multi-label classifiers and probabilistic model working together to improve predictive performance. (3) It is more efficient due to potential functions based on multi-label classifiers reducing the computational cost for annotation.Extensive experiments demonstrated the superiority of the proposed approach over state-of-the-art approaches for semantic annotation of real data (183 human-annotated tables obtained from the UCI Machine Learning Repository).
Abstract.A distributed system is composed of various resources which have mutually complicated dependencies. The fact increases an importance of the dependency resolution facility which makes it possible to check if there is given dependency between resources such as a router, and to determine which resources have given dependencies with other resources. This paper addresses a CIM query facility for dependency resolution. Its main features are ease of query description, bi-directional query execution, and completeness of query capability to CIM. These features are performed by a rule-based language that enables interesting predicates to be defined declaratively, unification and backtracking, and the preparation of predicates corresponding to CIM metamodel elements. To validate this facility, it was applied in servers dynamically allocated to service providers in a data center. The basic behavior of the query facility and the dynamic server allocation was illustrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.