The non-structural protein 5A (NS5A) of hepatitis C virus (HCV) has been implicated in inhibition of antiviral activity of IFN. While previous studies have suggested an interaction between NS5A and the double-stranded RNA-dependent protein kinase (PKR), the possibility still remains that interaction with another molecule(s) is involved in the NS5A-mediated inhibition of IFN. In the present study, we investigated a possible interaction between NS5A and 29,59-oligoadenylate synthetase (2-5AS), another key molecule in antiviral activity. We observed that NS5A physically interacted with 2-5AS in cultured cells, with an N-terminal portion of NS5A [aa 1-148; NS5A(1-148)] and two separate portions of 2-5AS (aa 52-104 and 184-275) being involved in the interaction. Single point mutations at residue 37 of NS5A affected the degree of the interaction with 2-5AS, with a Phe-to-Leu mutation (F37L) augmenting and a Phe-to-Asn mutation (F37N) diminishing it. Virus rescue assay revealed that the full-length NS5A (NS5A-F) and NS5A(1-148), the latter of which contains neither the IFN sensitivity-determining region (ISDR) nor the PKR-binding domain, significantly counteracted the antiviral activity of IFN. Introduction of a F37N mutation into NS5A(1-148) impaired the otherwise more significant IFN-inhibitory activity of NS5A(1-148). It was also found that the F37N mutation was highly disadvantageous for the replication of an HCV RNA replicon. Taken together, our results suggest the possibility that NS5A interacts with 2-5AS and inhibits the antiviral activity of IFN in an ISDR-independent manner.
We previously generated a mutant of simian immunodeficiency virus (SIV) lacking 5 of a total of 22 N-glycans in its external envelope protein gp120 with no impairment in viral replication capability and infectivity in tissue culture cells. Here, we infected rhesus macaques with this mutant and found that it also replicated robustly in the acute phase but was tightly, though not completely, contained in the chronic phase. Thus, a critical requirement for the N-glycans for the full extent of chronic infection was demonstrated. No evidence indicating reversion to a wild type was obtained during the observation period of more than 40 weeks. Monkeys infected with the mutant were found to tolerate a challenge infection with wild-type SIV very well. Analyses of host responses following challenge revealed no neutralizing antibodies against the challenge virus but strong secondary responses of cytotoxic T lymphocytes against multiple antigens, including Gag-Pol, Nef, and Env. Thus, the quintuple deglycosylation mutant appeared to represent a novel class of SIV live attenuated vaccine.
Recombinant measles viruses (MV) in which the authentic glycoprotein genes encoding the fusion and the haemagglutinin (H) proteins of the Edmonston (ED) vaccine strains were swapped singly or doubly for the corresponding genes of a lymphotropic MV wild-type virus (strain WTF) were used previously to investigate MV tropism in cell lines in tissue culture. When these recombinants and their parental strains, the molecular ED-based clone (ED-tag) and WTF, were used to infect cotton rats, only viruses expressing the MV WTF H protein replicated in secondary lymphatic tissues and caused significant immunosuppression. In vitro, viruses containing the ED H protein revealed a tropism for human peripheral blood lymphocytes as documented by enhanced binding and virus production, whereas those containing the WTF H protein replicated well in monocyte-derived dendritic cells (Mo-DC). This did not correlate with more efficient binding of these viruses to DC, but with an enhancement of uptake, virus spread, accumulation of viral antigens and virus production. Thus, replacement of the ED H protein with WTF H protein was sufficient to confer the DC tropism of WTF to ED-tag in vitro. This study suggests that the MV H protein plays an important role in determining cell tropism to immune cells and this may play an important role in the induction of immunosuppression in vivo.
Measles virus (MV) is the causative agent for acute measles and subacute sclerosing panencephalitis (SSPE). Although numerous mutations have been found in the MV genome of SSPE strains, the mutations responsible for the neurovirulence have not been determined. We previously reported that the SSPE Osaka-2 strain but not the wild-type strains of MV induced acute encephalopathy when they were inoculated intracerebrally into 3-week-old hamsters. The recombinant MV system was adapted for the current study to identify the gene(s) responsible for neurovirulence in our hamster model. Recombinant viruses that contained envelope-associated genes from the Osaka-2 strain were generated on the IC323 wild-type MV background. The recombinant virus containing the M gene alone did not induce neurological disease, whereas the H gene partially contributed to neurovirulence. In sharp contrast, the recombinant virus containing the F gene alone induced lethal encephalopathy. This phenotype was related to the ability of the F protein to induce syncytium formation in Vero cells. Further study indicated that a single T461I substitution in the F protein was sufficient to transform the nonneuropathogenic wild-type MV into a lethal virus for hamsters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.