Acinetobacter sp. strain YAA has five genes (atdA1 to atdA5) involved in aniline oxidation as a part of the aniline degradation gene cluster. From sequence analysis, the five genes were expected to encode a glutamine synthetase (GS)-like protein (AtdA1), a glutamine amidotransferase-like protein (AtdA2), and an aromatic compound dioxygenase (AtdA3, AtdA4, and AtdA5) (M. Takeo, T. Fujii, and Y. Maeda, J. Ferment. Bioeng. 85:17-24, 1998). A recombinant Pseudomonas strain harboring these five genes quantitatively converted aniline into catechol, demonstrating that catechol is the major oxidation product from aniline. To elucidate the function of the GS-like protein AtdA1 in aniline oxidation, we purified it from recombinant Escherichia coli harboring atdA1. The purified AtdA1 protein produced gamma-glutamylanilide (␥-GA) quantitatively from aniline and L-glutamate in the presence of ATP and MgCl 2 . This reaction was identical to glutamine synthesis by GS, except for the use of aniline instead of ammonia as the substrate. Recombinant Pseudomonas strains harboring the dioxygenase genes (atdA3 to atdA5) were unable to degrade aniline but converted ␥-GA into catechol, indicating that ␥-GA is an intermediate to catechol and a direct substrate for the dioxygenase. Unexpectedly, a recombinant Pseudomonas strain harboring only atdA2 hydrolyzed ␥-GA into aniline, reversing the ␥-GA formation by AtdA1. Deletion of atdA2 from atdA1 to atdA5 caused ␥-GA accumulation from aniline in recombinant Pseudomonas cells and inhibited the growth of a recombinant Acinetobacter strain on aniline, suggesting that AtdA2 prevents ␥-GA accumulation that is harmful to the host cell.
Antibody-dependent cellular cytotoxicity (ADCC) is dependent on the fucose content of oligosaccharides bound to monoclonal antibodies (MAbs). As MAbs with a low fucose content exhibit high ADCC activity, it is important to control the defucosylation levels (deFuc%) of MAbs and to analyze the factors that affect deFuc%. In this study, we observed that the deFuc% was inversely related to culture medium osmolality for MAbs produced in the rat hybridoma cell line YB2/0, with r 2 values as high as 0.92. Moreover, deFuc% exhibited the same correlation irrespective of the type of compound used for regulating osmolality (NaCl, KCl, fucose, fructose, creatine, or mannitol) at a culture scale ranging from 1 to 400 L. We succeeded in controlling MAb deFuc% by maintaining a constant medium osmolality in both perfusion and fed-batch cultures. In agreement with these observations, reverse transcription PCR analyses revealed decreased transcription of genes involved in glycolysis, GDP-fucose supply, and fucose transfer under hypoosmotic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.