Developmental deficits in neuronal connectivity are considered to be present in patients with autism spectrum disorders (ASDs). Here we examine this possibility by using in vivo spine imaging in the early postnatal cortex of ASD mouse models. Spines are classified by the presence of either the excitatory postsynaptic marker PSD-95 or the inhibitory postsynaptic marker gephyrin. ASD mouse models show consistent upregulation in the dynamics of PSD-95-positive spines, which may subsequently contribute to stable synaptic connectivity. In contrast, spines receiving inputs from the thalamus, detected by the presence of gephyrin clusters, are larger, highly stable and unaffected in ASD mouse models. Importantly, two distinct mouse models, human 15q11-13 duplication and neuroligin-3 R451C point mutation, show highly similar phenotypes in spine dynamics. This selective impairment in dynamics of PSD-95-positive spines receiving intracortical projections may be a core component of early pathological changes and be a potential target of early intervention.
Abstract-Proliferation and ␣ v  3 integrin-dependent migration of vascular smooth muscle cells are suppressed on polymerized type I collagen. To identify genes specifically regulated in human smooth muscle cells by polymerized collagen, we used the suppressive subtraction hybridization technique. Compared with smooth muscle cells cultured on monomer collagen, polymerized collagen suppresses the following: (1) a number of other extracellular matrix proteins, including fibronectin, thrombospondin-1, tenascin-C, and cysteine-rich protein 61; (2) actin binding proteins including ␣-actinin; (3) signaling molecules; (4) protein synthesis-associated proteins; and (5) genes with unknown functions. Some of the identified genes, including cysteine-rich protein 61, show unique kinetics of mRNA regulation by monomer or polymerized collagen distinct from growth factors, suggesting extracellular matrix-specific gene modulation. Moreover, in vivo balloon catheter-mediated injury to the rat carotid artery induces many of the genes that are suppressed by polymerized collagen. Protein levels of thrombospondin-1 and fibronectin are also suppressed by polymerized collagen. Thrombospondin-1-mediated smooth muscle cell migration on vitronectin is significantly inhibited after culture on polymerized collagen for 24 hours, which is associated with decreased ␣-actinin accumulation at focal adhesions. Thus, polymerized type I collagen dynamically regulates gene expression, pericellular accumulation of extracellular matrix molecules, and the response to a given matrix molecule. Key Words: thrombospondin-1 Ⅲ platelet-derived growth factor Ⅲ ␣-actinin Ⅲ filamin Ⅲ balloon injury M igration of vascular smooth muscle cells (SMCs) from the media into the intima contributes to progression of atherosclerotic lesions and restenosis after balloon angioplasty. 1 SMCs in the normal media are surrounded by extracellular matrix (ECM) molecules, including collagen type I, III, and IV and laminin. SMC interaction with matrix components can significantly influence their ability to respond to growth factors and/or chemoattractants and can promote the modulation of SMCs from a contractile to a synthetic phenotype. 2 Breakdown of the matrix may be necessary for initiation of SMC migration. 3 A majority of cell-cell and cell-matrix interactions are mediated by specific transmembrane adhesion receptors of the integrin family of proteins. 4,5 These molecules assemble as heterodimers through the noncovalent association of ␣ and  subunits. 4,5 Integrins serve as transmembrane links between the ECM and the cell surface, resulting in increased adhesion. Occupancy and clustering of integrins can activate intracellular signaling pathways and induce transcription factors and subsequent gene expression. 4,6 Thus, integrins can influence cell migration not only by the regulation of adhesion and spreading but also by modulation of intracellular signaling events.We have recently demonstrated that SMCs are arrested in G 1 on polymerized type I collagen fibrils in vitro, ...
Background: Accumulating evidence has demonstrated that renal hypoxia has a crucial role in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and AKI-to-CKD transition, ultimately culminating in end-stage kidney disease. Renal hypoxia in progressive CKD is intricately linked to persisting capillary loss, which is mainly due to dysregulated angiogenesis. Summary: In CKD, hypoxia-inducible factor (HIF) accumulates in the ischemic tubulointerstitium but fails to sufficiently stimulate angiogenic responses, partly because of blunted activation of HIF, which is best exemplified in diabetic kidney disease. In addition, vascular endothelial growth factor (VEGF) expression is downregulated, possibly because injured tubules are not able to express sufficient VEGF and inflammatory circumstances inhibit VEGF expression. The upregulation of antiangiogenic factors and the incompetence of endothelial progenitor cells (EPCs) may also play some roles in the inadequacy of capillary restoration. Administration of VEGF or angiopoietin-1 maintains peritubular capillaries in several kidney diseases; however, administration of a single angiogenic factor may lead to the formation of abnormal vessels and induce inflammation, resulting in worsening of hypoxia and tubulointerstitial fibrosis. HIF stabilization, which aims to achieve the formation of mature and stable vessels by inducing coordinated angiogenesis, is a promising strategy. Given that the effect of systemic HIF activation is highly context-dependent, further studies are needed to elucidate the precise roles of HIF in various kidney diseases. The adoptive transfer of EPCs or mesenchymal stem cells (MSCs) is a fascinating alternative strategy to restore the peritubular capillaries. Key Messages: Suppressed HIF activation and VEGF expression may be responsible for the dysregulated angiogenesis in progressive CKD. Administration of a single angiogenic factor can cause abnormal vessel formation and inflammation, leading to a detrimental result. Although further studies are warranted, HIF stabilization and adoptive transfer of EPCs or MSCs appear to be promising strategies to restore normal capillaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.