Mice and cattle use distinct pathways for the first cell segregation into inner cell mass (ICM) and trophectoderm (TE) lineages at the blastocyst stage. However, limited knowledge is available regarding the reliable transcriptional networks that orchestrate the complex developmental processes at this stage in nonrodent species. In order to elucidate the site-dominant transcriptomic properties of bovine blastocysts, we separated cell samples into the ICM and TE using both mechanical and chemical methods and performed in silico prescreening for candidate genes that were site-dominantly expressed in bovine blastocysts. We further performed quantitative real-time PCR and in situ hybridization using the site-specific cell samples. As a result, we identified seven ICM-dominant genes and five TE-dominant genes not found in earlier studies. Our findings provide novel insights into the mechanism of cell-fate specification in the pre-implantation bovine embryo.
The first segregation at the blastocyst stage is the symmetry-breaking event to characterize two cell components; namely, inner cell mass (ICM) and trophectoderm (TE). TEA domain transcription factor 4 (TEAD4) is a well-known regulator to determine TE properties of blastomeres in rodent models. However, the roles of bovine TEAD4 in blastocyst development have been unclear. We here aimed to clarify the mechanisms underlining TE characterization by TEAD4 in bovine blastocysts. We first found that the mRNA expression level was greater in TE than in ICM, which was further supported by TEAD4 immunofluorescent staining. Subsequently, we examined the expression patterns of TE-expressed genes;, and, in the -knockdown (KD) blastocysts. These expression levels significantly decreased in the KD blastocysts compared with controls. Of these downregulated genes, the expression level decreased the most. We further analyzed the expression levels of TE-expressed genes;, and in the KD blastocysts. Strikingly, the KD blastocysts showed the downregulation of , and Furthermore, the ratio of TE-to-ICM cell numbers in the KD blastocysts significantly decreased compared to controls. To our knowledge, this is the first study showing the regulation of expression thorough in mammalian embryos. Not only that, this study also provides evidence that reciprocal regulation of and is required for TE development with appropriate gene expression in bovine blastocysts.
Blastocyst formation gives rise to the inner cell mass (ICM) and trophectoderm (TE) and is followed by the differentiation of the epiblast (Epi) and primitive endoderm (PrE) within the ICM. Although these two-round cell lineage differentiations underpin proper embryogenesis in every mammal, their spatiotemporal dynamics are quite diverse among species. Here, molecular details of the blastocyst stage in cattle were dissected using an optimized in vitro culture method. Blastocyst embryos were placed on agarose gel filled with nutrient-rich media to expose embryos to both gaseous and liquid phases. Embryos derived from this "ongel" culture were transferred to surrogate mothers on day (D) 10 after fertilization and successfully implanted. Immunofluorescent studies using on-gel-cultured embryos revealed that the proportion of TE cells expressing the pluripotent ICM marker, OCT4, which was beyond 80% on D8, was rapidly reduced after D9 and reached 0% on D9.5. This first lineage segregation process was temporally parallel with the second one, identified by the spatial separation of Epi cells expressing SOX2 and PrE cells expressing SOX17. RNA-seq comparison of TE cells from D8 in vitro fertilized embryos and D14 in vivo embryos revealed that besides drastic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.