Soil salinization is a serious problem in the arid and semi-arid regions of Central Asia. To address the problems, we analyzed the dynamics and distribution patterns of salts in both rice-based and cotton-based cropping fields in selected farms of southern Kazakhstan and Uzbekistan with special emphasis on the dynamics of gypsum, which had a lower solubility than Na salts, as an index of water-movement regimes in irrigated fields. Most of the rice-based plots and some of the cotton-based plots exhibited no surface accumulation of soluble salts or gypsum because of repeated washing by a huge amount of irrigation water in the former or comfortable drainage in the latter. These soils are probably free from the risk of secondary salinization under present conditions and management practices. In contrast, uncultivated plots near canals accumulate both soluble salts and gypsum in the surface soil layers, and these salts would not be leached out without a drastic change to a predominantly downward pattern of water movement. In the intermediate stages in terms of soil salinization, some soils accumulated substantial amounts of soluble salts in surface layers but relatively low amounts of gypsum. In this case, periodic irrigation could have washed out most of the gypsum and soluble salts in a downward direction and, consequently, it is possible to leach out the accumulated soluble salts by applying additional irrigation water if necessary. However, there were some cases in which soils accumulated large amounts of gypsum in surface layers as well as soluble salts, suggesting that irrigation/drainage is generally insufficient to remove gypsum with a lower solubility and that these profiles are dominated by an overall upward movement of water. For these soils, drainage facilities should be improved to ensure the efficient leaching of accumulated salts on cropping. Thus, the condition of irrigated plots in terms of the direction of water movement and resulting salt regimes can be well understood from the distribution patterns of both soluble salts (or cations) and gypsum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.