Shoot branching is a major determinant of plant architecture and is highly regulated by endogenous and environmental cues. Two classes of hormones, auxin and cytokinin, have long been known to have an important involvement in controlling shoot branching. Previous studies using a series of mutants with enhanced shoot branching suggested the existence of a third class of hormone(s) that is derived from carotenoids, but its chemical identity has been unknown. Here we show that levels of strigolactones, a group of terpenoid lactones, are significantly reduced in some of the branching mutants. Furthermore, application of strigolactones inhibits shoot branching in these mutants. Strigolactones were previously found in root exudates acting as communication chemicals with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Thus, we propose that strigolactones act as a new hormone class-or their biosynthetic precursors-in regulating above-ground plant architecture, and also have a function in underground communication with other neighbouring organisms.
Bioactive gibberellins (GAs) are diterpene plant hormones that are biosynthesized through complex pathways and control diverse aspects of growth and development. Biochemical, genetic, and genomic approaches have led to the identification of the majority of the genes that encode GA biosynthesis and deactivation enzymes. Recent studies have highlighted the occurrence of previously unrecognized deactivation mechanisms. It is now clear that both GA biosynthesis and deactivation pathways are tightly regulated by developmental, hormonal, and environmental signals, consistent with the role of GAs as key growth regulators. In some cases, the molecular mechanisms for fine-tuning the hormone levels are beginning to be uncovered. In this review, I summarize our current understanding of the GA biosynthesis and deactivation pathways in plants and fungi, and discuss how GA concentrations in plant tissues are regulated during development and in response to environmental stimuli.
The hormone-mediated control of plant growth and development involves both synthesis and response. Previous studies have shown that gibberellin (GA) plays an essential role in Arabidopsis seed germination. To learn how GA stimulates seed germination, we performed comprehensive analyses of GA biosynthesis and response using gas chromatography-mass spectrometry and oligonucleotide-based DNA microarray analysis. In addition, spatial correlations between GA biosynthesis and response were assessed by in situ hybridization. We identified a number of transcripts, the abundance of which is modulated upon exposure to exogenous GA. A subset of these GA-regulated genes was expressed in accordance with an increase in endogenous active GA levels, which occurs just before radicle emergence. The GA-responsive genes identified include those responsible for synthesis, transport, and signaling of other hormones, suggesting the presence of uncharacterized crosstalk between GA and other hormones. In situ hybridization analysis demonstrated that the expression of GAresponsive genes is not restricted to the predicted site of GA biosynthesis, suggesting that GA itself, or GA signals, is transmitted across different cell types during Arabidopsis seed germination.
Previous work showed that PHYTOCHROME-INTERACTING FACTOR3-LIKE5 (PIL5), a light-labile basic helix-loop-helix protein, inhibits seed germination by repressing GIBBERELLIN 3beta-HYDROXYLASE1 (GA3ox1) and GA3ox2 and activating a gibberellic acid (GA) catabolic gene (GA2ox2). However, we show persistent light-dependent and PIL5-inhibited germination behavior in the absence of both de novo GA biosynthesis and deactivation by GA2ox2, suggesting that PIL5 regulates not only GA metabolism but also GA responsiveness. PIL5 increases the expression of two GA repressor (DELLA) genes, GA-INSENSITIVE (GAI) and REPRESSOR OF GA1-3 (RGA/RGA1), in darkness. The hypersensitivity of gai-t6 rga-28 to red light and the suppression of germination defects of a rga-28 PIL5 overexpression line show the significant role of this transcriptional regulation in seed germination. PIL5 also increases abscisic acid (ABA) levels by activating ABA biosynthetic genes and repressing an ABA catabolic gene. PIL5 binds directly to GAI and RGA promoters but not to GA and ABA metabolic gene promoters. Together, our results show that light signals perceived by phytochromes cause a reduction in the PIL5 protein level, which in turn regulates the transcription of two DELLA genes directly and that of GA and ABA metabolic genes indirectly.
This report provides direct evidence that strigolactone (SL) positively regulates drought and high salinity responses in Arabidopsis. Both SL-deficient and SL-response [more axillary growth (max)] mutants exhibited hypersensitivity to drought and salt stress, which was associated with shoot-rather than root-related traits. Exogenous SL treatment rescued the drought-sensitive phenotype of the SL-deficient mutants but not of the SL-response mutant, and enhanced drought tolerance of WT plants, confirming the role of SL as a positive regulator in stress response. In agreement with the drought-sensitive phenotype, max mutants exhibited increased leaf stomatal density relative to WT and slower abscisic acid (ABA)-induced stomatal closure. Compared with WT, the max mutants exhibited increased leaf water loss rate during dehydration and decreased ABA responsiveness during germination and postgermination. Collectively, these results indicate that cross-talk between SL and ABA plays an important role in integrating stress signals to regulate stomatal development and function. Additionally, a comparative microarray analysis of the leaves of the SL-response max2 mutant and WT plants under normal and dehydrative conditions revealed an SL-mediated network controlling plant responses to stress via many stress-and/or ABA-responsive and cytokinin metabolism-related genes. Our results demonstrate that plants integrate multiple hormone-response pathways for adaptation to environmental stress. Based on our results, genetic modulation of SL content/response could be applied as a potential approach to reduce the negative impact of abiotic stress on crop productivity.hormonal regulation | plant adaptation | transcriptome analysis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.