Polo-like kinase 4 (Plk4) is a key regulator of centriole duplication, an event critical for the maintenance of genomic integrity. Here we showed that Plk4 relocalizes from the inner Cep192 ring to the outer Cep152 ring as newly recruited Cep152 assembles around the Cep192-encircled daughter centriole. Crystal structure analyses revealed that Cep192 - and Cep152-derived peptides bind the cryptic polo box (CPB) of Plk4 in opposite orientations and in a mutually exclusive manner. The Cep152-peptide bound to the CPB markedly better than the Cep192-peptide and effectively snatched the CPB away from a preformed CPB–Cep192-peptide complex. A cancer-associated Cep152 mutation impairing the Plk4 interaction induced defects in procentriole assembly and chromosome segregation. Thus, Plk4 is intricately regulated in time and space through ordered interactions with two distinct scaffolds, Cep192 and Cep152, and a failure in this process may lead to human cancer.
The chemical synthesis of human interleukin-2 (IL-2) , having a core 1 sugar, by a ligation method is reported. Although IL-2 is a globular glycoprotein, its C-terminal region, in particular (99-133), is extremely insoluble when synthesized by solid-phase method. To overcome this problem, the side-chain carboxylic acid of the Glu residues was protected by a picolyl ester, thus reversing its polarity from negative to positive. This reverse polarity protection significantly increased the isoelectric point of the peptide segment and made it positive under acidic conditions and facilitated the purification. An efficient method to prepare the prolyl peptide thioester required for the synthesis of the (28-65) segment was also developed. These efforts resulted in the total synthesis of the glycosylated IL-2 having full biological activity.
The chemical synthesis of human interleukin-2 (IL-2) ,h aving ac ore 1s ugar,b yaligation method is reported. Although IL-2 is aglobular glycoprotein, its C-terminal region, in particular (99-133), is extremely insoluble when synthesized by solid-phase method. To overcome this problem, the sidechain carboxylic acid of the Glu residues was protected by ap icolyl ester,t hus reversing its polarity from negative to positive.This reverse polarity protection significantly increased the isoelectric point of the peptide segment and made it positive under acidic conditions and facilitated the purification. An efficient method to prepare the prolyl peptide thioester required for the synthesis of the (28-65) segment was also developed. These efforts resulted in the total synthesis of the glycosylated IL-2 having full biological activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.