Thaumatin, an intensely sweet-tasting protein, was secreted by the methylotrophic yeast Pichia pastoris. The mature thaumatin II gene was directly cloned from Taq polymerase-amplified PCR products by using TA cloning methods and fused the pPIC9K expression vector that contains Saccharomyces cerevisiae prepro alpha-mating factor secretion signal. Several additional amino acid residues were introduced at both the N- and C-terminal ends by genetic modification to investigate the role of the terminal end region for elicitation of sweetness in the thaumatin molecule. The secondary and tertiary structures of purified recombinant thaumatin were almost identical to those of the plant thaumatin molecule. Recombinant thaumatin II elicited a sweet taste as native plant thaumatin II; its threshold value of sweetness to humans was around 50 nM, which is the same as that of plant thaumatin II. These results demonstrate that the functional expression of thaumatin II was attained by Pichia pastoris systems and that the N- and C-terminal regions of the thaumatin II molecule do not -play an important role in eliciting the sweet taste of thaumatin.
Thaumatin is a sweet-tasting protein comprising a mixture of some variants. The major variants are thaumatins I and II. Although the amino acid sequence of thaumatin I was known and the nucleotide sequence of cDNA of thaumatin II was elucidated, the nucleotide sequence of thaumatin I has been controversial. We have cloned two thaumatin cDNAs from the fruit of Thaumatococcus daniellii Benth. One is the same nucleotide sequence as that of thaumatin II already reported, and the other is a novel nucleotide sequence. The amino acid sequence deduced from the novel cDNA was the same amino acid sequence as that of thaumatin I, the only exception being the residue at position 113 (Asp instead of Asn), indicating that the novel thaumatin cDNA is that for thaumatin I. This thaumatin I cDNA was transformed into Pichia pastoris X-33, and the recombinant thaumatin I expressed was purified and characterized. The threshold value of sweetness of the recombinant thaumatin I was the same as that of the plant thaumatin I, although several unexpected amino acid residues were attached to the N-terminal of the recombinant thaumatin I. These indicate that the N-terminal portion of thaumatin is not critical for the elicitation of sweetness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.