ObjectiveTo evaluate orthopedic metal artifact reduction algorithm (O-MAR) in CT orthopedic metal artifact reduction at different tube voltages, identify an appropriate low tube voltage for clinical practice, and investigate its clinical application.Materials and MethodsThe institutional ethical committee approved all the animal procedures. A stainless-steel plate and four screws were implanted into the femurs of three Japanese white rabbits. Preoperative CT was performed at 120 kVp without O-MAR reconstruction, and postoperative CT was performed at 80–140 kVp with O-MAR. Muscular CT attenuation, artifact index (AI) and signal-to-noise ratio (SNR) were compared between preoperative and postoperative images (unpaired t test), between paired O-MAR and non-O-MAR images (paired Student t test) and among different kVp settings (repeated measures ANOVA). Artifacts' severity, muscular homogeneity, visibility of inter-muscular space and definition of bony structures were subjectively evaluated and compared (Wilcoxon rank-sum test). In the clinical study, 20 patients undertook CT scan at low kVp with O-MAR with informed consent. The diagnostic satisfaction of clinical images was subjectively assessed.ResultsAnimal experiments showed that the use of O-MAR resulted in accurate CT attenuation, lower AI, better SNR, and higher subjective scores (p < 0.010) at all tube voltages. O-MAR images at 100 kVp had almost the same AI and SNR as non-O-MAR images at 140 kVp. All O-MAR images were scored ≥ 3. In addition, 95% of clinical CT images performed at 100 kVp were considered satisfactory.ConclusionO-MAR can effectively reduce orthopedic metal artifacts at different tube voltages, and facilitates low-tube-voltage CT for patients with orthopedic metal implants.
Background: Flipped classrooms have already begun to be used in many universities aboard, and they now make up for some of the short comings of the traditional classroom. We introduced the concept of flipped classrooms into a radiology class in China and evaluated the students' performance to find out whether it was a better learning method. Furthermore, we have attempted to identify the problems of application of flipped classrooms (as practiced under the Chinese education system) and make suggestions. Methods: Facilities made videos and prepared clinical cases and short lectures for the flipped classroom. A total of 55 undergraduate radiology students were asked to finish pre-class learning and pre-learning assessment, participate in a flipped classroom about bone malignant tumours, and complete questionnaires. Teachers were also need to finish the survey.(Continued on next page) Results:1) The students showed good performances in the pre-learning assessment. The mean scores for three prelearning assessment were 89.77, 96.54, and 93.71, respectively; the median scores were 90, 97.5, and 94, respectively. 2) After they attended the flipped classroom, their mastery of knowledge (case-solving skills, basic feature command, comparison ability, and overall knowledge command) showed improvements; after flipped classroom, the scores for these knowledge factors improved to 81.25, 85.42, 85.42, and 85.42%, respectively, compared to the scores they obtained before taking the flipped classroom (1.25, 68.75, 64.58, and 72.92% respectively).3) The students' discussion time and student-teacher-communication time increased, and the students' questions were solved satisfactorily. 4) CTDI-CV showed no improvement in critical thinking skills after taking the course. 5) The time spent in previewing (pre-class video watching, material reading, and pre-learning assessment) increased significantly. Conclusions: Flipped classrooms, when tested in a radiology classroom setting, show many advantages, making up for some inadequacies of didactic classrooms. They provide students with better learning experiences. We can continue to practice flipped classroom methods under the curriculum, but we still need to make improvements to make it more suitable for the Chinese medical education mode.
Background:Dandelion is commonly used in traditional Chinese medicine with several active compounds found in extracts. It has a variety of pharmacological effects, such as a reduction in swelling and inflammation, and detoxification. The mechanism by which dandelion extract inhibits the inflammatory response in skeletal muscle cells remains unknown; therefore, the aim of this study was to investigate the effects of dandelion extract root on the proliferation of skeletal muscle cells and the alleviation of lipopolysaccharide (LPS)-induced inflammatory response in vitro.Methods:Rat skeletal muscle cells were isolated from Sprague-Dawley rat and cultured in vitro which were cultured in basal medium, or medium containing LPS or dandelion extract. Cell counting kit-8 (CCK-8) was employed to measure cell proliferation; meanwhile, the optimal concentration of dandelion extract and treatment time were selected. Crystal violet staining was used to detect the proliferation of muscle cells. Western blotting analysis was used to detect the levels of inflammatory factors, myogenic factor, and p-AKT protein expression.Results:The optimal concentration and treatment time of dandelion extract for the following study were 5 mg/ml and 4 days, respectively. Dandelion extract was found to increase proliferation of rat skeletal muscle cells (t = 3.145, P < 0.05), with the highest effect observed at 5 mg/ml. LPS was found to decrease proliferation of skeletal muscle cells (t = −131.959, P < 0.001), and dandelion extract could against this affection (t = 19.466, P < 0.01). LPS could induce expression of inflammatory factors, including interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α (IL-1β: t = 9.118, P < 0.01; IL-6: t = 4.346, P < 0.05; TNF-α: t = 15.806, P < 0.05), and dandelion extract was shown to reduce LPS-induced expression of IL-1β, IL-6 and TNF-α (IL-1β: t = −2.823, P < 0.05; IL-6: t = −3.348, P < 0.01; and TNF-α: t = −3.710, P < 0.01). Furthermore, LPS was also shown to decrease expression of myogenic factor, including myod1 and myogenin (MyoD1: t = 4.039, P < 0.05 and myogenin: t = 3.300, P < 0.01), but dandelion extract was shown to against this effect of LPS (MyoD1: t = −3.160, P < 0.05 and myogenin: t = −3.207, P < 0.01). And then, LPS was found to increase expression of p-AKT protein (p-AKT/AKT: t = 4.432, P < 0.05). Moreover, expression of p-AKT protein was found to decrease, with 5 mg/ml of dandelion extract (p-AKT/AKT: t = −3.618, P < 0.05).Conclusions:The findings indicate that dandelion extract plays an important role in skeletal muscle cells viability regulation, promote cells proliferation by increasing level of p-AKT protein expression, and reduce LPS-induced expression of inflammatory factors, inhibiting the inflammatory response of rat skeletal muscle cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.