The Moore-Penrose inverse of a singular Wishart matrix is studied. When the scale matrix equals the identity matrix the mean and dispersion matrices of the Moore-Penrose inverse are known. When the scale matrix has an arbitrary structure no exact results are available. The article complements the existing literature by deriving upper and lower bounds for the expectation and an upper bound for the dispersion of the Moore-Penrose inverse. The results show that the bounds become large when the number of rows (columns) of the Wishart matrix are close to the degrees of freedom of the distribution.
In real-data analysis, deciding the best subset of variables in regression models is an important problem. Akaike's information criterion (AIC) is often used in order to select variables in many fields. When the sample size is not so large, the AIC has a non-negligible bias that will detrimentally affect variable selection. The present paper considers a bias correction of AIC for selecting variables in the generalized linear model (GLM). The GLM can express a number of statistical models by changing the distribution and the link function, such as the normal linear regression model, the logistic regression model, and the probit model, which are currently commonly used in a number of applied fields. In the present study, we obtain a simple expression for a biascorrected AIC (corrected AIC, or CAIC) in GLMs. Furthermore, we provide an 'R' code based on our formula. A numerical study reveals that the CAIC has better performance than the AIC for variable selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.