We previously reported that dietary supplementation with cholic acid (CA), the primary 12α-hydroxylated (12αOH) bile acid (BA), reduces plasma adiponectin concentration in rats. The aim of this study was to examine the distribution of adiponectin in the body of CA-fed rats and its influence on mucosal immunoglobulin A concentration in the intestine. Rats were fed a diet supplemented with or without CA (0.5 g CA/kg diet) for 13 weeks. A reduction in plasma adiponectin level was observed from week 3. At the end of the experiment, the CA diet reduced plasma adiponectin concentration both in the portal and aortic plasma. Accumulation of adiponectin was accompanied by an increase in cadherin-13 mRNA expression in the ileal mucosa of CA-fed rats. No increase was observed in adiponectin mRNA expression in the ileal and adipose tissues of the CA-fed rats. Immunoglobulin A concentration in the ileal mucosa was elevated in the CA-fed rats and was correlated with the ileal adiponectin concentration. 12αOH BAs may modulate mucosal immune response that are involved in the accumulation of adiponectin in the ileum.
Cell therapy for central nervous system (CNS) disorders is beginning to prove its safety and efficiency. Intraparenchymal transplantation can be an option for cell delivery; however, one concern regarding this method is that the transplantation cannula may cause additional brain injuries. These include vessel damage, which results in brain hemorrhage, and clogging of the cannula by brain debris and/or cell clusters, which requires replacement of the cannula or forced injection causing jet flow of the cell suspension. We compared cannulas for cell delivery used in clinical trials, the Pittsburg and Mizuho cannulas, to a newly designed one, MK01, to assess their usability. MK01 has a spherical-shaped tip with a fan-like open orifice on the side of the cannula, which prevents vessel damage, clogging of brain debris, and jet flow phenomenon. We compared the extent of rat cervical and abdominal arterial damage with the cannula, the amount of debris in the cannula, the force needed to cause jet flow, and cell viability. While the viability of cells passed through the cannulas was almost the same among cannulas (approximately 95%), the Pittsburg cannula caused cervical arterial injury and subsequent hemorrhage, as it required a significantly smaller force to penetrate the arterial wall. Moreover, the Pittsburg cannula, but not the Mizuho and MK01 cannulas, showed high frequency of brain debris in the needle tip (approximately 80%) after brain puncture. While jet flow of the injection liquid was observed even when using smaller forces in the Pittsburg and Mizuho cannulas, MK01 constantly showed low jet flow occurrence. Thus, MK01 seems to be safer than the previously reported cannulas, although further investigation is necessary to validate its safety for clinical use.
Difructose anhydride III (DFAIII) is a prebiotic involved in the reduction of secondary bile acids (BAs). We investigated whether DFAIII modulates BA metabolism, including enterohepatic circulation, in the rats fed with a diet supplemented with cholic acid (CA), one of the 12α-hydroxylated BAs. After acclimation, the rats were fed with a control diet or a diet supplemented with DFAIII. After 2 weeks, each group was further divided into two groups and was fed diet with or without CA supplementation at 0.5 g/kg diet. BA levels were analyzed in aortic and portal plasma, liver, intestinal content, and feces. As a result, DFAIII ingestion reduced the fecal deoxycholic acid level via the partial suppression of deconjugation and 7α-dehydroxylation of BAs following CA supplementation. These results suggest that DFAIII suppresses production of deoxycholic acid in conditions of high concentrations of 12α-hydroxylated BAs in enterohepatic circulation, such as obesity or excess energy intake. Abbreviation: BA: bile acid; BSH: bile salt hydrolase; CA: cholic acid; DCA: deoxycholic acid; DFAIII: difructose anhydride III; MCA: muricholic acid; MS: mass spectrometry; NCDs: non-communicable diseases; LC: liquid chromatography; SCFA: short-chain fatty acid; TCA: taurocholic acid; TCDCA: taurochenodeoxycholic acid; TDCA: taurodeoxycholic acid; TUDCA: tauroursodeoxychlic acid; TαMCA: tauro-α-muricholic acid; TβMCA: tauro-β-muricholic acid; TωMCA: tauro-ω-muricholic acid
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.