The realization of molecule-based miniature devices with advanced functions requires the development of new and efficient approaches for combining molecular building blocks into desired functional structures, ideally with these structures supported on suitable substrates 1-4. Supramolecular aggregation occurs spontaneously and can lead to controlled structures if selective and directional non-covalent interactions are exploited. But such selective supramolecular assembly has yielded almost exclusively crystals or dissolved structures 5; the self-assembly of absorbed molecules into larger structures 6-8, in contrast, has not yet been directed by controlling selective intermolecular interactions. Here we report the formation of surface-supported supramolecular structures whose size and aggregation pattern are rationally controlled by tuning the non-covalent interactions between individual absorbed molecules. Using low-temperature scanning tunnelling microscopy, we show that substituted porphyrin molecules adsorbed on a gold surface form monomers, trimers, tetramers or extended wire-like structures. We find that each structure corresponds in a predictable fashion to the geometric and chemical nature of the porphyrin substituents that mediate the interactions between individual adsorbed molecules. Our findings suggest that careful placement of functional groups that are able to participate in directed non-covalent interactions will allow the rational design and construction of a wide range of supramolecular architectures absorbed to surfaces.
The movement of chromosomes that precedes meiosis was observed in living cells of fission yeast by fluorescence microscopy. Further analysis by in situ hybridization revealed that the telomeres remain clustered at the leading end of premeiotic chromosome movement, unlike mitotic chromosome movement in which the centromere leads. Once meiotic chromosome segregation starts, however, centromeres resume the leading position in chromosome movement, as they do in mitosis. Although the movement of the telomere first has not been observed before, the clustering of telomeres is reminiscent of the bouquet structure of meiotic-prophase chromosomes observed in higher eukaryotes, which suggests that telomeres perform specific functions required for premeiotic chromosomal events generally in eukaryotes.
Intrinsic molecular fluorescence from porphyrin molecules on Au(100) has been realized by using a nanoscale multimonolayer decoupling approach with nanoprobe excitation in the tunneling regime. The molecular origin of luminescence is established by the observed well-defined vibrationally resolved fluorescence spectra. The molecules fluoresce at low "turn-on" voltages for both bias polarities, suggesting an excitation mechanism via hot electron injection from either tip or substrate. The excited molecules decay radiatively through Franck-Condon pi(*)-pi transitions.
Saddle-shaped deformation of planar porphyrin molecules is accomplished by rotations of four phenyl-based substituents, which results from optimum adsorption onto Au(111) surface. The nonplanar macrocyclic conformation is clearly visualized by using low-temperature scanning tunneling microscopy and confirmed by molecular orbital calculations. Inside of the supramolecular molecular islands, we find that two different orientations of the nonplanar porphyrins are randomly distributed. An orientational ordering is obtained after short thermal excitations, which should be associated with steric intermolecular interactions between substituents.
High-resolution e-beam patterning exposure of the surface of poly[(tert-butyl-methacrylate)-co-(methyl methacrylate)]-a common e-beam and deep-UV resist used in semiconductor microlithography-induced sharp changes in the surface hydrophobicity. These differences in hydrophobicity resulted in the selective attachment of heavy meromyosin to hydrophobic, unexposed surfaces. The movement of the actin filaments on myosin-rich and myosin-poor surfaces was statistically characterized in terms of velocity, acceleration, and angle of movement. The actin filaments have a smooth motion on myosin-rich surfaces and an uneven motion on myosin-poor surfaces. Interestingly, an excess of myosin sites has a slowing, albeit mild effect on the motion of the actin filaments. It was also found that the myosin-rich/myosin-poor boundary has an alignment-enforcement effect, especially for the filaments approaching the border from the myosin-rich side. Based on these results, we discuss the feasibility of building purposefully designed molecular motor arrays and the testing of the hypotheses regarding the functioning of the molecular motors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.