Long-term potentiation (LTP) is thought to be particularly important in the acquisition of hippocampus-associated memory, in part because it develops quickly and persists for indefinite periods. Extracellular proteolysis has been hypothesized to contribute to LTP by modifying adhesive relations of synapses and thus the morphology of excitatory synapses. Here we report that neuropsin (NP), an extracellular serine protease, is critically involved in the formation of both the potentiation effect and hippocampus-dependent forms of memory. NP-knockout mice were significantly impaired in the Morris water maze and Y-mazes and failed to exhibit early phase LTP induced by a single tetanus. Potentiation was also impaired or completely blocked by in vivo application of a specific inhibitor or a neutralizing monoclonal antibody for NP. Intriguingly, recombinant (r-) NP alone, without tetanic stimulation, elicited either long-lasting potentiation or depression, depending on the applied dose. The r-NP-elicited potentiation was occluded by prior induction of LTP, while theta-burst-elicited LTP was occluded by application of r-NP alone, suggesting that the two forms of plasticity have a common signalling pathway. r-NP-elicited potentiation and depression increased phosphorylation at different sites on the GluR1 subunit of the AMPA receptor that had previously been associated with LTP or long-term depression. Thus, we conclude that NP is necessary for establishment of LTP and has a significant role in memory acquisition.
Osteoclasts are multinucleated cells responsible for bone resorption. The differentiation of osteoclasts from bone marrow macrophages (BMMs) is induced by receptor activator of NF-κB ligand (RANKL). Osteoprotegerin (OPG), a decoy receptor of RANKL, inhibits osteoclastogenesis by blocking RANKL signaling. Here we investigated the degradation of OPG in vitro. Osteoclasts, but not BMMs, secreted OPG-degrading enzymes. Using mass spectrometry and RNA-sequencing analysis, we identified high-temperature requirement A serine peptidase 1 (HtrA1) as an OPG-degrading enzyme. HtrA1 did not degrade OPG pre-reduced by dithiothreitol, suggesting that HtrA1 recognizes the three-dimensional structure of OPG. HtrA1 initially cleaved the amide bond between leucine 90 and glutamine 91 of OPG, then degraded OPG into small fragments. Inhibitory activity of OPG on RANKL-induced osteoclastogenesis was suppressed by adding HtrA1 in RAW 264.7 cell cultures. These results suggest that osteoclasts potentially prepare a microenvironment suitable for osteoclastogenesis. HtrA1 may be a novel drug target for osteoporosis.
ObjectivesWe developed S (+)‐flurbiprofen plaster (SFPP), a novel NSAID patch containing S (+)‐flurbiprofen (SFP), a potent cyclooxygenase (COX) inhibitor. The purpose of this study was to assess efficacy of SFPP by analysing its effect on the gait disturbance and measuring the prostaglandin E2 (PGE
2) production in synovial fluid in a rat model of knee arthritis.MethodsKnee inflammation was induced in rats by intra‐articular injection of a yeast suspension. Subsequently, an NSAID patch containing SFP, ketoprofen or loxoprofen was applied over the affected knee. Gait was assessed at 2, 4 and 6 h after application of the patch. The PGE
2 concentration in the synovial fluid was measured after the gait assessment.Key findingsApplication of SFPP (0.125, 0.25, 0.5 or 1 mg/sheet) was followed by a decrease in the visual gait score at all the doses examined. In the case of the other two NSAID patches, only the ketoprofen patch (1 or 2 mg/sheet) and loxoprofen patch (5 mg/sheet) produced a decrease in the visual gait score. All of the NSAID patches decreased the PGE
2 production in the synovial fluid.ConclusionsThese results suggest the potential usefulness of SFPP as an analgesic patch in patients with inflammatory joint pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.