The considerably higher concentrations of T-2307 were selectively accumulated in C. albicans via transporter-mediated systems, as compared with the concentrations in rat hepatocytes. This transporter-mediated uptake of T-2307 contributes to its potent anticandidal activity.
ABSTRACT:We developed 3-{5-[4-(cyclopentyloxy)-2-hydroxybenzoyl]-2-[(3-hydroxy-1,2-benzisoxazol-6-yl)methoxy]phenyl} propionic acid (T-5224) as a novel inhibitor of the c-Fos/activator protein-1 for rheumatoid arthritis therapy. We predicted the metabolism of T-5224 in humans by using human liver microsomes (HLM), human intestinal microsomes (HIM), recombinant human cytochrome P450 (P450), and UDP-glucuronosyltransferases (UGTs). T-5224 was converted to its acyl O-glucuronide (G2) by UGT1A1 and UGT1A3 and to its hydroxyl O-glucuronide (G3) by several UGTs, but it was not metabolized by the P450s. A comparison of the intrinsic clearances (CL int ) between HLM and HIM suggested that the glucuronidation of T-5224 occurs predominantly in the liver. UGT1A1 showed a higher k cat /K m value than UGT1A3 for G2 formation, but a lower k cat /K m value than UGT1A3 for G3 formation. A high correlation was observed between G2 formation activity and UGT1A1-specific activity (-estradiol 3-glucuronidation) in seven individual HLM. A high correlation was also observed between G2 formation activity and UGT1A1 content in the HLM. These results strongly suggest that UGT1A1 is responsible for G2 formation in human liver. In contrast, no such correlation was observed with G3 formation, suggesting that multiple UGT isoforms, including UGT1A1 and UGT1A3, are involved in G3 formation. G2 is also observed in rat and monkey liver microsomes as a major metabolite of T-5224, suggesting that G2 is not a human-specific metabolite. In this study, we obtained useful information on the metabolism of T-5224 for its clinical use.
Mouse UDP-glucuronosyltransferase (Ugt) 1a6a and Ugt1a6b share 98% sequence homology, but there have been no reports to date that compare their expression levels or enzymatic activities in serotonin glucuronidation. Thus, we designed specific primers for Ugt1a6a and Ugt1a6b to compare their expression in mouse brain regions and livers. Ugt1a6a was dominantly expressed in mouse brains, especially the hippocampus, while both Ugt1a6a and Ugt1a6b were highly expressed in mouse livers, indicating that there are significant differences in the expression patterns of Ugt1a6a and Ugt1a6b among mouse tissues. Glucuronidation of endogenous neurotransmitter serotonin was catalyzed by Ugt1a6b with k(cat)/K(m) (4.5 M(-1)·s(-1)) slightly higher than that of Ugt1a6a (2.4 M(-1)·s(-1)). However, the difference in expression levels between Ugt1a6a and Ugt1a6b in the hippocampus led us to speculate that Ugt1a6a is likely the predominant catalyst of serotonin glucuronidation in the mouse brain. In conclusion, we successfully elucidated the differences between Ugt1a6a and Ugt1a6b expression in the mouse brain. Our new findings indicate that Ugt1a6a and Ugt1a6b play different roles in mice, driven by differences in expression and kinetic properties for serotonin glucuronidation.
Mouse UDP-glucuronosyltransferase 1a6 (Ugt1a6) contains two functional copies of 1a6a and 1a6b that share high sequence homology (98%). Only 10 amino acids located around the substrate recognition region are different out of 531 total residues. Although Ugt1a6 plays important roles in conjugating phenolic compounds, the functional characteristics of these isozymes are unclear. We performed functional analyses of mouse Ugt1a6a and Ugt1a6b using two isomeric polyphenols (trans- and cis-resveratrol). The cDNAs of mouse Ugt1a6a and Ugt1a6b were cloned and constructed as recombinant proteins using a yeast expression system, and kinetic parameters were evaluated. The wild-type Ugt1a6a and Ugt1a6b proteins catalysed trans- and cis-resveratrol 3-O-glucuronidation. Although the K(m) value for trans-resveratrol was significantly lower for Ugt1a6a compared with Ugt1a6b, the K(m) values for cis-resveratrol were comparable for the isozymes. Despite high sequence homology, significant kinetic differences were observed between the isozymes. To identify the critical residues for resveratrol glucuronidation, we constructed 10 variants of Ugt1a6a (T81P, N96R, H98Q, L100V, S104P, N115S, I117L, V118T, V119L and D120E). The I117L variant had Ugt1a6b-like enzymatic properties of K(m) in trans-resveratrol, and V(max) and K(si) in cis-form, suggesting that the residues located at position 117 of Ugt1a6a and Ugt1a6b play an important role in resveratrol glucuronidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.