Modern computing platforms usually use multiple sensors to report system information. In order to achieve high availability (HA) for the platform, the sensors can be used to efficiently detect system faults that make a cloud service not live. However, a sensor may fail and disable HA protection. In this case, human intervention is needed, either to change the original fault model or to fix the sensor fault. Therefore, this study proposes an HA mechanism that can continuously provide HA to a cloud system based on dynamic fault model reconstruction. We have implemented the proposed HA mechanism on a four-layer OpenStack cloud system and tested the performance of the proposed mechanism for all possible sets of sensor faults. For each fault model, we inject possible system faults and measure the average fault detection time. The experimental result shows that the proposed mechanism can accurately detect and recover an injected system fault with disabled sensors. In addition, the system fault detection time increases as the number of sensor faults increases, until the HA mechanism is degraded to a one-system-fault model, which is the worst case as the system layer heartbeating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.