Telomere lengthening is one of the key events in most cancers, and depends largely on telomerase activation. Telomerase activation is a well-known phenomenon in gliomas; however, its mechanism remains obscure. In this study, we investigated the presence of mutations in the promoter of the telomerase reverse transcriptase (TERT) gene in a series of 546 gliomas. We found a high incidence of mutually exclusive mutations located at two hot spots, C228T and C250T, in all subtypes of gliomas (55 %). The frequency of mutation was particularly high among primary glioblastomas (70 %) and pure oligodendroglial tumors (74 %), while relatively low in diffuse astrocytomas and anaplastic astrocytomas (19 and 25 %, respectively). The expression level of TERT in tumors carrying those mutations was on average 6.1 times higher than that of wild-type tumors, indicating that the mutated promoter leads to upregulation of TERT. TERT promoter mutations were observed in almost all tumors harboring concurrent total 1p19q loss and IDH1/2 mutations (98 %). Otherwise TERT promoter mutations were mostly observed among IDH wild-type tumors. Most EGFR amplifications (92 %) were also associated with TERT promoter mutations. Our data indicate that mutation of the TERT promoter is one of the major mechanisms of telomerase activation in gliomas. The unique pattern of TERT promoter mutations in relation to other genetic alterations suggests that they play distinct roles in the pathogenesis of oligodendroglial and astrocytic tumors. Our results shed a new light on the role of telomerase activation in the development of adult gliomas.
The prevalence of CD79B and MYD88 mutations in PCNSLs was considerably higher than reported in systemic diffuse large B-cell lymphomas. This observation could reflect the paucity of antigen stimuli from the immune system in the central nervous system (CNS) and the necessity to substitute them by the constitutive activation of CD79B and MYD88 that would initiate the signalling cascades. These hotspot mutations may serve as a genetic hallmark for PCNSL serving as a genetic marker for diagnose and potential targets for molecular therapy.
The association between p53 immunohistochemistry and TP53 mutation status has been controversial. The present study aims to re-evaluate the efficacy of p53 immunohistochemistry to predict the mutational status of TP53. A total of 157 diffuse gliomas (World Health Organization grades II-IV) were assessed by exon-by-exon DNA sequencing from exon 4 through 10 of TP53 using frozen tissue samples. Immunohistochemistry with a p53 antibody (DO-7) on paired formalin-fixed paraffin-embedded materials was assessed for the extent and intensity of reactivity in all cases. A total of 72 mutations were detected in 66 samples. They included 60 missense mutations, five nonsense mutations, four deletions and three alterations in the splicing sites. A receiver operating characteristic curve analysis revealed that strong p53 immunoreactivity in more than 10% of cells provided the most accurate prediction of mutation. Using this cutoff value, 52 of 55 immunopositive cases harbored a mutation, whereas only 14 of 102 immunonegative cases showed mutations, sensitivity and specificity being 78.8% and 96.7%. Tumors with frameshift mutations frequently showed negative immunostaining. Staining interpretation by an independent observer yielded comparable accuracy. We thus propose p53 immunohistochemistry as a moderately sensitive and highly specific marker to predict TP53 mutation.
Germ cell tumors constitute a heterogeneous group that displays a broad spectrum of morphology. They often arise in testes; however, extragonadal occurrence, in particular brain, is not uncommon, and whether they share a common pathogenesis is unknown. We performed whole exome sequencing in 41 pairs of central nervous system germ cell tumors (CNS GCTs) of various histology and their matched normal tissues. We then performed targeted sequencing of 41 selected genes in a total of 124 CNS GCTs, 65 testicular germ cell tumors (tGCTs) and 8 metastatic GCTs to the CNS. The results showed that mutually exclusive mutations of genes involved in the MAPK pathway were most common (48.4 %), typically in KIT (27.4 %), followed by those in the PI3K pathway (12.9 %), particularly in MTOR (6.5 %), among the 124 CNS GCTs. Pure germinomas and non-germinomatous germ cell tumors (NGGCTs), as well as CNS and testicular GCTs, showed similar mutational profiles, suggesting that GCTs share a common molecular pathogenesis. Mutated MTOR identified in CNS GCTs upregulated phosphorylation of the AKT pathway proteins including AKT and 4EBP1 in nutrient-deprived conditions and enhanced soft-agar colony formation; both events were suppressed in a dose-dependent manner by addition of the MTOR inhibitor pp242. Our findings indicate that the dominant genetic drivers of GCTs regardless of the site of origin are activation of the MAPK and/or PI3K pathways by somatic point mutations. Mutated MTOR represents a potential target for novel targeted therapies for refractory GCTs.
Intracranial germ cell tumors (iGCTs) are the second most common brain tumors among children under 15 in Japan. The pathogenesis of iGCTs is largely unexplored. Although a subset of iGCTs is known to have KIT mutation, its impact on the biology and patients' survival has not been established. In this study, we investigated genes involved in the KIT signaling pathway. 65 iGCTs (30 pure germinomas, 14 teratomas, 18 mixed GCTs, 2 yolk sac tumors, 1 choriocarcinoma) were screened for mutation of KIT, KRAS, NRAS, HRAS, BRAF, PDGFRA, and IDH1 by direct sequencing. KIT expression was examined by immunohistochemistry and quantitative PCR. Chromosomal status was analyzed by array-comparative genomic hybridization (aCGH). Somatic mutations were detected only in KIT and RAS, which were frequently observed in pure germinomas (60.0 %), but rare in non-germinomatous GCTs (NGGCTs) (8.6 %). All KIT/RAS mutations were mutually exclusive. Regardless of the mutation status or mRNA expression, the KIT protein was expressed in all germinomas, while only in 54.3 % of NGGCTs. Amplification of KIT was found in one pure germinoma by aCGH. In pure germinomas, high expression of KIT mRNA was associated with the presence of KIT/RAS alterations and severe chromosomal instability. Our results indicate that alterations of the KIT signaling pathway play an important role in the development of germinomas. Pure germinomas may develop through two distinct pathogeneses: one with KIT/RAS alterations, elevated KIT mRNA expression and severe chromosomal instability, and the other through yet an unidentified mechanism without any of the above abnormalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.