Background The urgent need for telemedicine has become clear in the COVID-19 pandemic. To facilitate telemedicine, the development and improvement of remote examination systems are required. A system combining an electronic stethoscope and Bluetooth connectivity is a promising option for remote auscultation in clinics and hospitals. However, the utility of such systems remains unknown. Objective This study was conducted to assess the utility of real-time auscultation using a Bluetooth-connected electronic stethoscope compared to that of classical auscultation, using lung and cardiology patient simulators. Methods This was an open-label, randomized controlled trial including senior residents and faculty in the department of general internal medicine of a university hospital. The only exclusion criterion was a refusal to participate. This study consisted of 2 parts: lung auscultation and cardiac auscultation. Each part contained a tutorial session and a test session. All participants attended a tutorial session, in which they listened to 15 sounds on the simulator using a classic stethoscope and were told the correct classification. Thereafter, participants were randomly assigned to either the real-time remote auscultation group (intervention group) or the classical auscultation group (control group) for test sessions. In the test sessions, participants had to classify a series of 10 lung sounds and 10 cardiac sounds, depending on the study part. The intervention group listened to the sounds remotely using the electronic stethoscope, a Bluetooth transmitter, and a wireless, noise-canceling, stereo headset. The control group listened to the sounds directly using a traditional stethoscope. The primary outcome was the test score, and the secondary outcomes were the rates of correct answers for each sound. Results In total, 20 participants were included. There were no differences in age, sex, and years from graduation between the 2 groups in each part. The overall test score of lung auscultation in the intervention group (80/110, 72.7%) was not different from that in the control group (71/90, 78.9%; P=.32). The only lung sound for which the correct answer rate differed between groups was that of pleural friction rubs (P=.03); it was lower in the intervention group (3/11, 27%) than in the control group (7/9, 78%). The overall test score for cardiac auscultation in the intervention group (50/60, 83.3%) was not different from that in the control group (119/140, 85.0%; P=.77). There was no cardiac sound for which the correct answer rate differed between groups. Conclusions The utility of a real-time remote auscultation system using a Bluetooth-connected electronic stethoscope was comparable to that of direct auscultation using a classic stethoscope, except for classification of pleural friction rubs. This means that most of the real world’s essential cardiopulmonary sounds could be classified by a real-time remote auscultation system using a Bluetooth-connected electronic stethoscope. Trial Registration UMIN-CTR UMIN000040828; https://tinyurl.com/r24j2p6s and UMIN-CTR UMIN000041601; https://tinyurl.com/bsax3j5f
The utility of remote auscultation was unknown. This study aimed to evaluate internet-connected real-time remote auscultation using cardiopulmonary simulators. In this open-label randomized controlled trial, the physicians were randomly assigned to the real-time remote auscultation group (intervention group) or the classical auscultation group (control group). After the training session, the participants had to classify the ten cardiopulmonary sounds in random order as the test session. In both sessions, the intervention group auscultated with an internet-connected electronic stethoscope. The control group performed direct auscultation using a classical stethoscope. The total scores for correctly identified normal or abnormal cardiopulmonary sounds were 97/100 (97%) in the intervention group and 98/100 (98%) in the control group with no significant difference between the groups (p > 0.99). In cardiac auscultation, the test score in the control group (94%) was superior to that in the intervention group (72%, p < 0.05). Valvular diseases were not misclassified as normal sounds in real-time remote cardiac auscultation. The utility of real-time remote cardiopulmonary auscultation using an internet-connected electronic stethoscope was comparable to that of classical auscultation. Classical cardiac auscultation was superior to real-time remote auscultation. However, real-time remote cardiac auscultation is useful for classifying valvular diseases and normal sounds.
A 28-year-old pregnant woman presented with swelling of the left foot after she was bitten by a Japanese pit viper. At first the swelling was mild to moderate but then spread up to the left knee the following day. The patient’s condition improved with antivenom treatment. No complication occurred in either the mother or the fetus. Although adverse reaction is a concern, antivenom should be considered as an option even in pregnant women if the benefits outweigh the risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.