The pathophysiology of major depressive disorder (MDD) remains elusive, and there is no established biochemical marker used in the daily clinical setting. This situation may result in part from the heterogeneity of MDD, which might include heterogeneous subgroups with different biological mechanisms. In this review, we discuss three promising biological systems/markers to potentially subtype MDD: the dopamine system, the hypothalamicpituitary-adrenal axis, and chronic inflammatory markers. Several lines of evidence suggest that a facet of MDD is a dopamine agonist-responsive subtype. Focusing on the hypothalamic-pituitaryadrenal axis, depressive spectrum disorders show hypercortisolism to hypocortisolism, which could be detected by hormonal challenge tests, such as the dexamethasone/corticotrophin-releasing hormone test. Finally, accumulating evidence suggests that at least some MDD patients show characteristics similar to those of chronic inflammatory diseases, including neuroinflammatory markers and reduced tryptophan due to the increased activation of the tryptophan-kynurenine pathway. Future studies should examine the inter-relations between these systems/markers to subtype and integrate the pathophysiology of MDD.
This randomized, placebo-controlled, crossover, and double-blind trial aimed to examine the possible effects of four weeks L-theanine administration on stress-related symptoms and cognitive functions in healthy adults. Participants were 30 individuals (nine men and 21 women; age: 48.3 ± 11.9 years) who had no major psychiatric illness. L-theanine (200 mg/day) or placebo tablets were randomly and blindly assigned for four-week administration. For stress-related symptoms, Self-rating Depression Scale, State-Trait Anxiety Inventory-trait, and Pittsburgh Sleep Quality Index (PSQI) scores decreased after L-theanine administration (p = 0.019, 0.006, and 0.013, respectively). The PSQI subscale scores for sleep latency, sleep disturbance, and use of sleep medication reduced after L-theanine administration, compared to the placebo administration (all p < 0.05). For cognitive functions, verbal fluency and executive function scores improved after L-theanine administration (p = 0.001 and 0.031, respectively). Stratified analyses revealed that scores for verbal fluency (p = 0.002), especially letter fluency (p = 0.002), increased after L-theanine administration, compared to the placebo administration, in individuals who were sub-grouped into the lower half by the median split based on the mean pretreatment scores. Our findings suggest that L-theanine has the potential to promote mental health in the general population with stress-related ailments and cognitive impairments.
The etiology of autism spectrum disorder (ASD) remains unclear; however, the toxic environmental exposure to oxidative stress has been suggested to play an important role in its pathogenesis. A loss of balance between oxidative stress and antioxidant capacity produces an excess of reactive nitrogen species (RNS) such as nitric oxide (NO). Polyunsaturated fatty acids (PUFAs), particularly arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid, are closely related to NO and NO synthase. In the pathophysiology of ASD, NO is related to the activity of primary PUFAs. NO modulates short- and long-term synaptic plasticity and plays essential roles in the regulation of a wide range of physiological processes including neurotransmission. NO affects the function of reactive oxygen species (ROS) in the local cellular milieu, in which biological antioxidants are present. NO plays a double role in the organism showing both neuroprotective and neurotoxic effects. Redox imbalance leads to the activation of the neurotoxic pathway, suggesting crossroads for the neurotoxic or neuroprotective effects of NO. Furthermore, the dual role of NO could depend on the adaptive functions of the antioxidant capacity and oxidative stress-related ROS/RNS as the disease progresses. Increased concentrations of arachidonic acid promote neuronal survival, and the dysregulation of the NO system plays an important role in the pathophysiology of bipolar disorder and recurrent depressive disorders. Therefore, the NO system could provide useful drug targets for these diseases. NO and NO donors also show therapeutic potential for Alzheimer's disease and schizophrenia with refractory symptoms and cognitive dysfunction.
Cerebrospinal fluid (CSF) is virtually the only one accessible source of proteins derived from the central nervous system (CNS) of living humans and possibly reflects the pathophysiology of a variety of neuropsychiatric diseases. However, little is known regarding the genetic basis of variation in protein levels of human CSF. We examined CSF levels of 1,126 proteins in 133 subjects and performed a genome-wide association analysis of 514,227 single nucleotide polymorphisms (SNPs) to detect protein quantitative trait loci (pQTLs). To be conservative, Spearman's correlation was used to identify an association between genotypes of SNPs and protein levels. A total of 421 cis and 25 trans SNP-protein pairs were significantly correlated at a false discovery rate (FDR) of less than 0.01 (nominal P < 7.66 × 10-9). Cis-only analysis revealed additional 580 SNP-protein pairs with FDR < 0.01 (nominal P < 2.13 × 10-5). pQTL SNPs were more likely, compared to non-pQTL SNPs, to be a disease/trait-associated variants identified by previous genome-wide association studies. The present findings suggest that genetic variations play an important role in the regulation of protein expression in the CNS. The obtained database may serve as a valuable resource to understand the genetic bases for CNS protein expression pattern in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.