Millions of physical disabilities, who have lost a hand or both hands, are in need of prosthetic hands not only for decoration but also for the functions to help them with basic daily activities. Although EMG prosthetic hands are being extensively studied to satisfy this need, most of them are too expensive to be economically available, difficult to operate and maintain by a user him/herself, or over heavy for longtime wearing. The aim of this study is therefore to develop a simplified EMG prosthetic hand (sim-EMGPH) to solve these problems. The sim-EMGPH consists of five parts: a lightweight robotic hand with two motors to realize the most frequent hand activities, a highly stretchable cosmetic glove with little load on the motors, an EMG measurement system including sensors with high wearability made of soft conductive materials, a controller implemented by a 32-bit microprocessor which performs EMG signal processing, pattern recognition, and motor control, and a human-friendly tablet interface for the user to operate the sim-EMGPH by him/herself. We manufactured three sim-EMGPHs for three subjects: two with congenital upper limb deficiency and one with upper limb amputation. Free task experiments showed that the subjects could operate the sim-EMGPHs by themselves to perform basic activities of daily living. Limitations revealed and improvement plans are also discussed in this paper.
EMG prosthetic hands are being extensively studied for the disabled who need them not only for cosmesis but also for the functions to help them with basic daily activities. However, most EMG prosthetic hands are developed for adults. Since the early use of prosthetic hands is important for the children to accept and adapt to them, we are developing low degrees of freedom (DoF) prosthetic hand that is suitable for children. Due to the limited size of a child's hand, the servo motor which drives the MP joint are small-sized and low-power. Hence, a pinch-force-magnification mechanism is required to improve the pinch force of the EMG prosthetic hand. In this paper we designed a wire-driven mechanism which can magnify pinch force by increasing the length of the MP joint's moment arm. Pinch force measurement experiment validated that the pinch force of the prosthetic hand with the mechanism is more than twice of that of the hand with direct drive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.