We investigated in detail how polar cumulene molecules like diphenylketene were accommodated in faujasite zeolite pores based on 13C CP/MAS and DD/MAS NMR analyses as well as quantum chemical calculations after adsorbing the molecule into the zeolite NaY or AgY having “hard” sodium ions or “soft” silver ions. Since the diphenylketene has such a specific structure that a carbonyl group (a hard base) is accumulated by a carbon-carbon double bond (a soft π base), which is conjugated with two benzene rings (soft π bases), it is possible for the diphenylketene to adopt multicoordination modes to different metal ions in the zeolite. Compared with the coordination modes of benzophenone and 1,1-diphenylethene adsorbed in the NaY and AgY, those of diphenylketene were identified, and specific coordination behaviors in the zeolite’s supercages were classified depending on the hard or soft metal characters: The C=O and phenyl coordination modes to Na+ in NaY prevail, while the C=C and phenyl coordination to Ag+ in AgY is favored. We also unveiled the difference in the molecular mobility depending on the types of cations in the zeolite by comparing the 13C CP/MAS and DD/MAS NMR spectra.
We discovered that the aluminosilicates-stabilized silyl cations, which were created from a solid-acid catalyst, the proton-exchanged montmorillonite, and Et3SiH, efficiently promoted the reductive benzylation of benzenes with aromatic carboxylic acid chlorides and Et3SiH in one-pot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.