Objectives To evaluate the efficacy of fermented milk containing Lactobacillus casei strain Shirota (LcS) on the incidence of constipation, diarrhea, acute respiratory infections (ARI), and nutritional status of young Vietnamese children. Methods A controlled field trial was conducted with 1003 children (3–5 years old) in Thanh Hoa province in Vietnam. The probiotic group (n = 510) consumed fermented milk 65 mL/day containing 108 CFU/mL of LcS for the 12-week intervention period, whereas the control group (n = 493) was not given any. The incidence of constipation, diarrhea, ARI, and anthropometry in children was determined at baseline, after 4, 8, and 12-week intervention, and after the 4-week follow-up period. Results Probiotic drink decreased the incidence of constipation after the 12-week intervention period (12.0% vs. 32.0%, OR = 0.28 (95% CI: 0.21–0.40), p < 0.001), tended to decrease the incidence of diarrhea (4.9% vs. 7.9%, OR = 0.60 (95% CI: 0.35–1.01), p = 0.068), and prevented the occurrence of ARI (15.9% vs. 24.5%, OR = 0.58 (95% CI: 0.42–0.79), p < 0.001), when compared with the control group. In contrast, no probiotic effects were observed for the duration of diarrhea or ARI. Weight gain was higher in the probiotic group than in the control group after 4, 8, and 12-week intervention and after the 4-week follow-up period (p < 0.05). Conclusions Daily intake of fermented milk containing LcS strongly prevented the incidence of constipation and ARI in Vietnamese children. This study also revealed the potential effects of the use of a probiotic drink on diarrhea prevention as well as nutritional status improvement.
Summary Glycation, a non-enzymatic glycosylation of proteins, induces tissue damage in association with various diseases and aging phenomena. Pentosidine, an advanced glycation end product, is involved in aging phenomena such as tissue stiffness. In this study, we aimed to find a potent anti-glycation food material and to verify its health benefits by clinical trial. From among 681 hot water plant extracts, lemon balm (Melissa officinalis; LB) leaf extract was selected and revealed to have more potent inhibitory activity for pentosidine formation than a representative anti-glycation agent, aminoguanidine. Rosmarinic acid (RA), a typical polyphenol in Lamiaceae plants, was identified as a major active component in LB extract (LBE). Furthermore, LBE or RA dose-dependently suppressed glycation-associated reactions such as increased fluorescence, yellowing of collagen fiber sheets, and degeneration of the fibrous structure of elastin fiber sheets. An open-label, parallel-group comparative trial was conducted in 28 healthy Japanese subjects aged 31-65 y who consumed LB tea (LB group) or barley tea (Control group) for 6 wk. The LB group showed significant reductions in brachial-ankle pulse wave velocity, reflecting arterial stiffness, and b* (yellow) color values in forearm skin compared with the Control group. A gender-stratified analysis revealed that cheek skin elasticity was significantly improved in the LB group compared with the Control group only in female subjects. It is concluded that the hot water extract of LB leaf has the potential to provide health benefits with regard to glycation-associated tissue damage in blood vessels and skin of healthy adults. Key Words lemon balm, glycation, pentosidine, arterial stiffness, skin elasticity Glycation, the non-enzymatic glycosylation of proteins, is known to be involved in the onset of various diseases and conditions of aging. The substances generated by this reaction are known as advanced glycation endproducts (AGEs). Since the tissue contents of AGEs in diabetic patients (1, 2) and diabetic animals (3) are known to be much higher than in their healthy counterparts, AGEs are considered to be involved in the progression of complications of diabetes such as diabetic nephropathy (4) and cataracts (5). Involvement of the accumulation of AGEs in cardiovascular diseases (6, 7) and Alzheimer's disease (8) has also been reported.However, the stiffness of tissues such as arteries and skin is known to increase with age (9, 10) and is especially high in patients with diabetes compared to healthy subjects (9, 11). Pentosidine, one of the crosslinking AGEs, has a structure in which the lysine and arginine residues of tissue protein are cross-linked by a pentose such as ribose (12). It has been reported that pentosidine content increases with age (2, 9, 12) and positively correlates with the degree of tissue stiffness (7,13,14). One of the causes of the deterioration of tissue elasticity in elderly or diabetic patients is considered to be the accumulation of crosslinking AGEs su...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.