The underlying mechanism behind age-induced wastage of the human ovarian follicle reserve is unknown. In this study, we identify impaired ATM (ataxia-telengiectasia mutated)-mediated DNA double strand break (DSB) repair as a cause of aging in mouse and human oocytes. We show that DSBs accumulate in primordial follicles with age. In parallel, expression of key DNA DSB repair genes BRCA1, MRE11, Rad51, and ATM, but not BRCA2, decline in single mouse and human oocytes. In BRCA1-deficient mice, reproductive capacity was impaired, primordial follicle counts were lower, and DSBs were increased in remaining follicles with age relative to wild-type mice. Furthermore, oocyte-specific knockdown of BRCA1, MRE11, Rad51 and ATM expression increased DSBs and reduced survival while BRCA1 overexpression enhanced both parameters. Likewise, ovarian reserve was impaired in young women with germline BRCA1 mutations compared to controls as determined by serum concentrations of anti-mullerian hormone. These data implicate DNA DSB repair efficiency as an important determinant of oocyte aging in women.
Oocyte aging has a significant impact on reproductive outcomes both quantitatively and qualitatively. However, the molecular mechanisms underlying the age-related decline in reproductive success have not been fully addressed. BRCA is known to be involved in homologous DNA recombination and plays an essential role in double-strand DNA break repair. Given the growing body of laboratory and clinical evidence, we performed a systematic review on the current understanding of the role of DNA repair in human reproduction. We find that BRCA mutations negatively affect ovarian reserve based on convincing evidence from in vitro and in vivo results and prospective studies. Because decline in the function of the intact gene occurs at an earlier age, women with BRCA1 mutations exhibit accelerated ovarian aging, unlike those with BRCA2 mutations. However, because of the still robust function of the intact allele in younger women and because of the masking of most severe cases by prophylactic oophorectomy or cancer, it is less likely one would see an effect of BRCA mutations on fertility until later in reproductive age. The impact of BRCA2 mutations on reproductive function may be less visible because of the delayed decline in the function of normal BRCA2 allele. BRCA1 function and ataxia-telangiectasia-mutated (ATM)-mediated DNA repair may also be important in the pathogenesis of age-induced increase in aneuploidy. BRCA1 is required for meiotic spindle assembly, and cohesion function between sister chromatids is also regulated by ATM family member proteins. Taken together, these findings strongly suggest the implication of BRCA and DNA repair malfunction in ovarian aging.
We provide direct evidence of diminished ovarian reserve as well as accelerated primordial follicle loss and oocyte DNA damage in women with BRCA mutations. These findings may further our understanding of ovarian aging, and be useful when counseling BMCs.
Objective: To assess whether woman who have BRCA mutations (WBM) experience more declines in ovarian reserve after chemotherapy treatment, as it induces oocyte death by deoxyribonucleic acid (DNA) damage, and BRCA mutations result in DNA damage repair deficiency. Design: Longitudinal cohort study. Setting: Academic centers. Patient(s): The 108 evaluable women with breast cancer were stratified into those never tested (negative family history; n ¼ 35) and those negative (n ¼ 59) or positive (n ¼ 14) for a pathogenic BRCA mutation. Intervention(s): Sera were longitudinally obtained before and 12-24 months after chemotherapy treatment, assayed for antim€ ullerian hormone (AMH), and adjusted for age at sample collection. Main Outcome Measure(s): Ovarian recovery, defined as the geometric mean of the after chemotherapy age-adjusted AMH levels compared with baseline levels. Result(s): Compared with the controls, the before chemotherapy treatment AMH levels were 24% and 34% lower in those negative or positive for BRCA mutations, consistent with accelerated ovarian aging in WBM. The WBM had a threefold difference in AMH recovery after chemotherapy treatment (1.6%), when compared with BRCA negative (3.7%) and untested/low risk controls (5.2%). Limiting the analysis to the most common regimen, doxorubicin and cyclophosphamide followed by paclitaxel, showed similar results. These findings were mechanistically confirmed in an in vitro mouse oocyte BRCA knockdown bioassay, which showed that BRCA deficiency results in increased oocyte susceptibility to doxorubicin. Conclusion(s):Women who have pathogenic BRCA mutations are more likely to lose ovarian reserve after chemotherapy treatment, suggesting an emphasis on fertility preservation. Furthermore, our findings generate the hypothesis that DNA repair deficiency is a shared mechanism between aging, infertility, and cancer.
Establishment of early pregnancy is promoted by a complex network of signalling molecules that mediate cell-to-cell and cell-to-extracellular matrix communications between the receptive endometrium and the invasive trophectoderm. In this study, we have attempted to evaluate the expression profiles of cadherin and catenin during embryo implantation in the mouse. Western blotting studies along with immunocytochemical analysis revealed that E-cadherin is expressed rather ubiquitously in the uterine epithelial cells, distinct enrichment is observed on the apical membrane in the endometrium of peri-implantation uterus specifically at the implantation sites and not at the inter-implanation sites. b-Catenin also is upregulated and is specifically restricted to apical membrane of epithelial cells of implantation sites. Progesterone induced expression of E-cadherin and 17b-estradiol regulated the expression of catenin in implantation-delayed uteri. Interestingly, estradiol imparted negative modulation on cadherin expression when co-administered with progesterone. On the contrary, trophoblast exhibits a striking down regulation of cadherin, catenin and Ca 2+ at peri implanting stage. These observations suggest that the trophoblasts exhibited an invasive phenotype while the endometrial epithelium displayed an adhesive phenotype during the window of implantation. Thus, embryo implantation presents an instance where two interacting surfaces showed mutually complementing interaction phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.