We report on the fabrication and characterization of AlGaN-based deep ultraviolet light-emitting diodes (LEDs) with the emission wavelength ranging from 255 to 280 nm depending on the Al composition of the active region. The LEDs were flip-chip bonded and achieved external quantum efficiencies of over 3% for all investigated wavelengths. Under cw operation, an output power of more than 1 mW at 10 mA was demonstrated. A moth-eye structure was fabricated on the back side of the sapphire substrate, and on-wafer output power measurement indicated a 1.5-fold improvement of light extraction.
We report on the fabrication and characterization of high efficiency ultraviolet (UV) light emitting diodes (LEDs) with emission wavelength ranging from 255 to 355 nm. Epi-layers of UV LEDs were grown on AlGaN templates with sapphire substrates. Flip-chip configuration without removing sapphire is used for characterization of the UV LEDs. External quantum efficiencies (EQEs) over 3% were obtained for all the investigated wavelengths with maximum value reaching 5.1% for 280 nm LED. Under RT DC operation at a current of 500 mA, output powers of 38, 77, and 64 mW were measured for 257, 280, and 354 nm, respectively. By using enhanced light extraction technologies, such as, moth-eye structure on the back side of the sapphire substrate, we expect to improve these values by up to 50%.
Deep ultraviolet (DUV) light-emitting diodes (LEDs) on patterned sapphire substrates (PSSs) have been clearly demonstrated. AlN templates grown on PSSs had average threading dislocation densities (TDDs) of as low as 5×107 cm-2. Flip-chip DUV LEDs fabricated on PSSs demonstrated a significantly high performance. The 266 nm LED exhibited an output power of 5.3 mW and an external quantum efficiency (EQE) of 1.9% at 60 mA DC, and the 278 nm LED had 8.4 mW output and an EQE of 3.4%. Moreover, the 70% lifetime was more than 700 h at 20 mA.
AlGaN-based deep ultraviolet light-emitting diodes (LEDs) with aluminum reflective electrodes deposited to cover both p- and n-mesh contact electrodes have been fabricated. A 1.55-fold increase in light extraction efficiency has been demonstrated. Despite their reduced contact area, the LEDs exhibited only a slight increase in forward voltage of 0.45 V at 20 mA. Also, their 50% lifetime was estimated to be about 10,000 h at 20 mA DC at room temperature by extrapolation. Owing to the reflective electrodes, a 288 nm LED with external quantum efficiency as high as 5.4% was achieved. The light output power was 4.6 mW at 20 mA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.