The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
Liver cancer, which is most often associated with virus infection, is prevalent worldwide, and its underlying etiology and genomic structure are heterogeneous. Here we provide a whole-genome landscape of somatic alterations in 300 liver cancers from Japanese individuals. Our comprehensive analysis identified point mutations, structural variations (STVs), and virus integrations, in noncoding and coding regions. We discovered mutational signatures related to liver carcinogenesis and recurrently mutated coding and noncoding regions, such as long intergenic noncoding RNA genes (NEAT1 and MALAT1), promoters, CTCF-binding sites, and regulatory regions. STV analysis found a significant association with replication timing and identified known (CDKN2A, CCND1, APC, and TERT) and new (ASH1L, NCOR1, and MACROD2) cancer-related genes that were recurrently affected by STVs, leading to altered expression. These results emphasize the value of whole-genome sequencing analysis in discovering cancer driver mutations and understanding comprehensive molecular profiles of liver cancer, especially with regard to STVs and noncoding mutations.
A number of histone demethylases have been identified and biochemically characterized, but the pathological roles of their dysfunction in human disease like cancer have not been well understood. Here, we demonstrate important roles of lysine-specific demethylase 1 (LSD1) in human carcinogenesis. Expression levels of LSD1 are significantly elevated in human bladder carcinomas compared with nonneoplastic bladder tissues (p < 0.0001). cDNA microarray analysis also revealed its transactivation in lung and colorectal carcinomas. LSD1-specific small interfering RNAs significantly knocked down its expression and resulted in suppression of proliferation of various bladder and lung cancer cell lines. Concordantly, introduction of exogenous LSD1 expression promoted cell cycle progression of human embryonic kidney fibroblast cells. Expression profile analysis showed that LSD1 could affect the expression of genes involved in various chromatin-modifying pathways such as chromatin remodeling at centromere, centromeric heterochromatin formation and chromatin assembly, indicating its essential roles in carcinogenesis through chromatin modification.Histone methylation plays important dynamic roles in regulating chromatin structure. Precise conformational regulation of chromatins is crucial for normal cellular processes such as DNA replication, DNA repair, chromosome recombination and mRNA transcription. Although histone methylation was considered to be a static modification until recently, the discovery of lysine-specific demethylase 1 (LSD1), which specifically demethylates mono-and dimethylated histone H3 at lysine 4 (H3-K4), indicated that the histone methylation was reversible.1 Subsequently, a JmjC domain-containing protein was identified to possess histone demethylase activity, and the JmjC domain was shown to be a demethylase signature motif.2 JmjC domain-containing enzymes catalyze the removal of methyl groups using a hydroxylation reaction, requiring iron and a-ketoglutarate cofactors. Several additional proteins were identified as histone lysine demethylases on the basis of the presence of the JmjC motif. 3-9 Although information of histone demethylases in their physiological function has been accumulated, their involvement in human disease remains unclear.We previously reported that SMYD3, a histone methyltransferase, stimulates cell proliferation through its methyltransferase activity and plays a crucial role in human carcinogenesis.10-14 Dysfunction of histone methylation was also shown to contribute to human carcinogenesis, 15-17 but the relationship between abnormal histone demethylation and human carcinogenesis is still largely unclear. To find demethylases involved in human carcinogenesis, we screened a number of histone demethylases in clinical tissues by expression profile analysis and found transactivation of LSD1 in various types of cancer.LSD1, also known as AOF2, is a histone demethylase that does not belong to the JmjC family, catalyzing the demethylation of histone H3-K4 and K9. LSD1 is composed of sever...
Protein arginine methylation is a novel post-translational modification regulating a diversity of cellular processes, including histone functions, but the roles of protein arginine methyltransferases (PRMTs) in human cancer are not well investigated. To address this issue, we first examined expression levels of genes belonging to the PRMT family and found significantly higher expression of PRMT1 and PRMT6, both of which are Type I PRMTs, in cancer cells of various tissues than in non-neoplastic cells. Abrogation of the expression of these genes with specific siRNAs significantly suppressed growth of bladder and lung cancer cells. Expression profile analysis using the cells transfected with the siRNAs indicated that PRMT1 and PRMT6 interplay in multiple pathways, supporting regulatory roles in the cell cycle, RNA processing and also DNA replication that are fundamentally important for cancer cell proliferation. Furthermore, we demonstrated that serum asymmetric dimethylarginine (ADMA) levels of a number of cancer cases are significantly higher than those of nontumor control cases. In summary, our results suggest that dysregulation of PRMT1 and PRMT6 can be involved in human carcinogenesis and that these Type I arginine methyltransferases are good therapeutic targets for various types of cancer.We previously reported that SMYD3, a histone lysine methyltransferase, stimulates proliferation of cells and plays an important role in human carcinogenesis through its methyltransferase activity.
We here analyzed genomic features of 412 BTC samples from Japanese and Italian populations. A total of 32 significantly and commonly mutated genes were identified, some of which negatively affected patient prognosis, including a novel deletion of MUC17 at 7q22.1. Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes were detected in 11% of patients with BTC. BTCs have distinct genetic features including somatic events and germline predisposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.