Self-organization in π-conjugated polymers gives rise to a highly ordered lamellar structure, in which inter-chain stacking spontaneously forms two-dimensional conjugated sheets. This multi-layer stacked nature of semicrystalline polymers allows the inclusion of various functional molecules. In particular, redox-triggered ion-intercalation is an ideal system for molecular doping, for which extremely high charge carrier density has been achieved. Here, we conducted a detailed structural analysis and electron density simulation to pinpoint exactly where the guest dopants are located periodically in the void space in a polymer’s lamellae. Our findings are indicative of an intercalation compound of layered polymers and a guest intercalant. We show that a homogeneous cocrystal structure can be realized throughout the host polymer medium, which is proved by the observation of coherent carrier transport. The intercalation cocrystal nature gives the best achievable doping level in semicrystalline polymers and excellent environmental stability. These findings should open up possibilities for tuning the collective dynamics of functional molecules through intercalation phenomena.
Recent developments in molecular doping technologies allow extremely high carrier densities in polymeric semiconductors, exhibiting great diversity because of the unique size, conformation, and steric effect of molecular dopants. However, it is controversial how steric effects can limit the doping efficiency and to what extent dopants can be accommodated in polymers. Here, we employ two distinct conjugated polymers with different alkyl side-chain densities, where polymers are doped via anion-change, allowing greater variation in the incorporation of molecular dopants having different electrostatic potentials and shapes. We characterize the doping efficiency with regard to steric effects, considering the unique void space in the conjugated polymers. Our study reveals that doping efficiency of polymers with sparse alkyl side-chains is significantly greater than that with dense side-chains. A closest-packed supramolecule is realized with a particular combination of a sparse polymer and a large dopant, giving rise to high conductivity, air stability, and remarkably high work function. This work provides a critical insight into overcoming steric effects in molecular doping.
Self-organization in π-conjugated polymers gives rise to a highly ordered lamellar structure, in which inter-chain stacking spontaneously forms two-dimensional conjugated sheets. This multi-layer stacked nature of semicrystalline polymers results not only in effective charge transport, but also allows the inclusion of various functional molecules and ions. In particular, redox-triggered ion-intercalation in a polymer's lamellae is an ideal system for molecular doping, for which extremely high charge carrier density, corresponding to one carrier per monomer unit, has been achieved. We conducted a detailed structural analysis and electron density simulation to pinpoint exactly where the guest dopants are located periodically in the restricted void space in a polymer's lamellae. Our findings are indicative of an intercalation compound of layered polymers and a guest intercalant. In addition, we show that a homogeneous cocrystal structure can be realized throughout the host polymer medium, which is proved unambiguously by the observation of coherent carrier transport across microscopic-scale films. Also, the intercalation cocrystal nature gives the best achievable doping level in semicrystalline conjugated polymers and excellent environmental stability. These findings should open up new possibilities for tuning the collective dynamics of functional molecules and ions through intercalation phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.