The tertiary structure of lipid-free apolipoprotein (apo) A-I in the monomeric state comprises two domains: a N-terminal alpha-helix bundle and a less organized C-terminal domain. This study examined how the N- and C-terminal segments of apoA-I (residues 1-43 and 223-243), which contain the most hydrophobic regions in the molecule and are located in opposite structural domains, contribute to the lipid-free conformation and lipid interaction. Measurements of circular dichroism in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that single (L230P) or triple (L230P/L233P/Y236P) proline insertions into the C-terminal alpha helix disrupted the organization of the C-terminal domain without affecting the stability of the N-terminal helix bundle. In contrast, proline insertion into the N terminus (Y18P) disrupted the bundle structure in the N-terminal domain, indicating that the alpha-helical segment in this region is part of the helix bundle. Calorimetric and gel-filtration measurements showed that disruption of the C-terminal alpha helix significantly reduced the enthalpy and free energy of binding of apoA-I to lipids, whereas disruption of the N-terminal alpha helix had only a small effect on lipid binding. Significantly, the presence of the Y18P mutation offset the negative effects of disruption/removal of the C-terminal helical domain on lipid binding, suggesting that the alpha helix around Y18 concealed a potential lipid-binding region in the N-terminal domain, which was exposed by the disruption of the helix-bundle structure. When these results are taken together, they indicate that the alpha-helical segment in the N terminus of apoA-I modulates the lipid-free structure and lipid interaction in concert with the C-terminal domain.
Although the N-terminal region in human apolipoprotein (apo) A-I is thought to stabilize the lipid-free structure of the protein, its role in lipid binding is unknown. Using synthetic fragment peptides, we examined the lipid-binding properties of the first 43 residues (1-43) of apoA-I in comparison with residues 44-65 and 220-241, which have strong lipid affinity in the molecule. Circular dichroism measurements demonstrated that peptides corresponding to each segment have potential propensity to form alpha-helical structure in trifluoroethanol. Spectroscopic and thermodynamic measurements revealed that apoA-I (1-43) peptide has the strong ability to bind to lipid vesicles and to form alpha-helical structure comparable to apoA-I (220-241) peptide. Substitution of Tyr-18 located at the center of the most hydrophobic region in residues 1-43 with a helix-breaking proline resulted in the impaired lipid binding, indicating that the alpha-helical structure in this region is required to trigger the lipid binding. In contrast, apoA-I (44-65) peptide exhibited a lower propensity to form alpha-helical structure upon binding to lipid, and apoA-I (44-65/S55P) peptide exhibited diminished, but not completely impaired, lipid binding, suggesting that the central region of residues 44-65 is not pivotally involved in the formation of the alpha-helical structure and lipid binding. These results indicate that the most N-terminal region of apoA-I molecule, residues 1-43, contributes to the lipid interaction of apoA-I through the hydrophobic helical residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.