Deep electronic levels of Al
x
Ga1-x
N (0.25<x<0.60) were investigated by deep level transient spectroscopy (DLTS) and photocapacitance methods. Si-doped AlGaN layers were grown on an AlN/sapphire template by metal–organic vapor phase epitaxy. DLTS analysis using a sampling time window of up to 100 s showed two dominant deep levels with activation energies (ΔE) higher than 1.0 eV in Al
x
Ga1-x
N with x=0.25 and 0.37. The densities of those levels were higher than 1×1016 cm-3. For the Al0.60Ga0.40N sample, the deeper levels (ΔE>1.5 eV) were detected by photocapacitance measurement. It was found that the energy position of the dominant deep level closely followed the Fermi level stabilization energy reported by Walukiewicz et al. [J. Cryst. Growth 269 (2004) 119], indicating that the origin of the dominant deep level in AlGaN is related to a defect complex including anti-site defects and divacancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.