Measurement of the serum M/N ratio seems to be a promising method for accurately assessing MYCN status in NB, although a larger set of patients needs to be examined to confirm this result.
Fenretinide, which mediates apoptosis in neuroblastoma cells, is being considered as a novel therapeutic for neuroblastoma. The cytotoxic mechanisms of fenretinide, however, have not been fully elucidated. Sustained-activation of JNK and p38 MAPK signaling has been shown recently to have a pivotal role in stress-induced apoptosis. Whether fenretinide activates the signaling in neuroblastoma cells is not known. In the present study, fenretinide induced sustainedactivation of both JNK and p38 MAPK in neuroblastoma cells. Pretreatment with the antioxidant L-ascorbic acid almost completely inhibited the accumulation of fenretinide-induced intracellular reactive oxygen species (ROS), activation of JNK and p38 MAPK and apoptosis. Intracellular ROS production and activation of stress signaling was not altered by fenretinide in resistant neuroblastoma cells. Our study demonstrates that in neuroblastoma cells, fenretinide induces sustainedactivation of JNK and p38 MAPK in an ROS-dependent manner and indicates that JNK and p38 MAPK signaling might mediate fenretinide-induced apoptosis. Our results also indicate that suppression of the fenretinide-induced ROS productive system and the downstream JNK and p38 MAPK signaling pathways causes neuroblastoma cells to become resistant to fenretinide.
Phosphoglycerate kinase 1 (PGK-1) is a glycolytic enzyme encoded by PGK-1, which maps to the X chromosome. PGK-1 deficiency causes X-linked recessive hereditary chronic hemolytic anemia, myopathy, and neurological disorders due to insufficient ATP regeneration. Early-onset parkinsonism has occasionally been reported as a neurological complication of this condition. However, heterozygous carriers of PGK-1 deficiency were thought to be neurologically asymptomatic. Here, we report a boy with PGK-1 deficiency and his mother, a carrier of a heterozygous mutation in PGK-1, both of whom presented with early-onset parkinsonism. The boy developed parkinsonism at 9 years of age. His parkinsonism partially responded to levodopa treatment. 123l-metaiodobenzylguanidine (MIBG) uptake was normal. His mother, who exhibited normal PGK-1 activity in erythrocytes, developed parkinsonism at 36 years of age. Her symptoms were undistinguishable from those of Parkinson’s disease (PD), despite her normal uptake of MIBG. Neither a point mutation in nor multiplication of SNCA was found. Additionally, hotspots of LRRK2 and GBA were not mutated. To our knowledge, this report provides the first description of parkinsonism in a carrier of PGK-1 deficiency. Interestingly, PGK-1 is located within the confirmed susceptibility locus for PD known as PARK12. These observations suggest that PGK-1 mutations confer susceptibility to PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.