-The potential health risks of inhaling nanomaterials are of great concern because of their high specific activity and their unique property of translocation. Earlier studies showed that exposure to nanoparticles through the airway affects both respiratory and extrapulmonary organs. When pregnant mice were exposed to nanoparticles, the respiratory system, the central nervous system and the reproductive system of their offspring were affected. The aim of this study was to assess the effect of maternal exposure to nanoparticles on the offspring, particularly on the kidney. Pregnant ICR mice were exposed to a total of 100 μg of carbon black nanoparticle on the fifth and the ninth days of pregnancy. Samples of blood and kidney tissue were collected from 3-week-old and 12-week-old male offspring mice. Collagen expression was examined by quantitative RT-PCR and immunohistochemistry. Serum levels of creatinine and blood urea nitrogen were examined. Exposure of pregnant ICR mice to carbon black resulted in increased expression of Collagen, type VIII, a1 (Col8a1) in the tubular cells in the kidney of 12-week-old offspring mice but not in 3-week-old ones. The levels of serum creatinine and blood urea nitrogen, indices of renal function, were not different between the groups. These observations were similar to those of tubulointerstitial fibrosis in diabetic nephropathy. These results suggest that maternal exposure to carbon black nanoparticle induces renal abnormalities similar to tubulointerstitial fibrosis in diabetic nephropathy are induced in the kidney of offspring.
The neural mechanism by which negative air ions (NAI) mediate the regulation of autonomic nervous system activity is still unknown. We examined the effects of NAI on physiological responses, such as blood pressure (BP), heart rate (HR), and heart rate variability (HRV) as well as neuronal activity, in the paraventricular nucleus of the hypothalamus (PVN), locus coeruleus (LC), nucleus ambiguus (NA), and nucleus of the solitary tract (NTS) with c-Fos immunohistochemistry in anesthetized, spontaneously breathing rats. In addition, we performed cervical vagotomy to reveal the afferent pathway involved in mediating the effects of NAI on autonomic regulation. NAI significantly decreased BP and HR, and increased HF power of the HRV spectrum. Significant decreases in c-Fos positive nuclei in the PVN and LC, and enhancement of c-Fos expression in the NA and NTS were induced by NAI. After vagotomy, these physiological and neuronal responses to NAI were not observed. These findings suggest that NAI can modulate autonomic regulation through inhibition of neuronal activity in PVN and LC as well as activation of NA neurons, and that these effects of NAI might be mediated via the vagus nerves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.