In bacteria, nascent proteins bear the pretranslationally generated N-terminal (Nt) formyl-methionine (fMet) residue. Nt-fMet of bacterial proteins is a degradation signal, termed fMet/N-degron. By contrast, proteins synthesized by cytosolic ribosomes of eukaryotes were presumed to bear unformylated Nt-Met. Here we found that the yeast formyltransferase Fmt1, although imported into mitochondria, could also produce Nt-formylated proteins in the cytosol. Nt-formylated proteins were strongly up-regulated in stationary phase or upon starvation for specific amino acids. This up-regulation strictly required the Gcn2 kinase, which phosphorylates Fmt1 and mediates its retention in the cytosol. We also found that the Nt-fMet residues of Nt-formylated proteins act as fMet/N-degrons and identified the Psh1 ubiquitin ligase as the recognition component of the eukaryotic fMet/N-end rule pathway, which destroys Nt-formylated proteins.
Various forms of protein (proteoforms) are generated by genetic variations, alternative splicing, alternative translation initiation, co- or post-translational modification and proteolysis. Different proteoforms are in part discovered by characterizing their N-terminal sequences. Here, we introduce an N-terminal-peptide-enrichment method, Nrich. Filter-aided negative selection formed the basis for the use of two N-blocking reagents and two endoproteases in this method. We identified 6,525 acetylated (or partially acetylated) and 6,570 free protein N-termini arising from 5,727 proteins in HEK293T human cells. The protein N-termini included translation initiation sites annotated in the UniProtKB database, putative alternative translational initiation sites, and N-terminal sites exposed after signal/transit/pro-peptide removal or unknown processing, revealing various proteoforms in cells. In addition, 46 novel protein N-termini were identified in 5′ untranslated region (UTR) sequence with pseudo start codons. Our data showing the observation of N-terminal sequences of mature proteins constitutes a useful resource that may provide information for a better understanding of various proteoforms in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.