Shiga toxin 1 (Stx1) is a virulence factor of enterohemorrhagic Escherichia coli, such as the O157:H7 strain. In the intestines, secretory IgA (SIgA) is a major component of the immune defense against pathogens and toxins. To form SIgA, the production of dimeric IgA that retains biological activity is an important step. We previously established hybrid-IgG/IgA having variable regions of the IgG specific for the binding subunit of Stx1 (Stx1B) and the heavy chain constant region of IgA. If hybrid-IgG/IgA cDNAs can be expressed in plants, therapeutic or preventive effects may be expected in people eating those plants containing a “plantibody”. Here, we established transgenic Arabidopsis thaliana expressing dimeric hybrid-IgG/IgA. The heavy and light chain genes were placed under the control of a bidirectional promoter and terminator of the chlorophyll a/b-binding protein of Arabidopsis thaliana (expression cassette). This expression cassette and the J chain gene were subcloned into a single binary vector, which was then introduced into A. thaliana by means of the Agrobacterium method. Expression and assembly of the dimeric hybrid-IgG/IgA in plants were revealed by ELISA and immunoblotting. The hybrid-IgG/IgA bound to Stx1B and inhibited Stx1B binding to Gb3, as demonstrated by ELISA. When Stx1 holotoxin was pre-treated with the resulting plantibody, the cytotoxicity of Stx1 was inhibited. The toxin neutralization was also demonstrated by means of several assays including Stx1-induced phosphatidylserine translocation on the plasma membrane, caspase-3 activation and 180 base-pair DNA ladder formation due to inter-nucleosomal cleavage. These results indicate that edible plants containing hybrid-IgG/IgA against Stx1B have the potential to be used for immunotherapy against Stx1-caused food poisoning.
Shiga toxin is a major virulence factor of food-poisoning caused by Escherichia coli such as O157:H7. Secretory immunoglobulin (Ig) A (SIgA) is supposed to prevent infection of the mucosal surface and is a candidate agent for oral immunotherapy. We previously established a recombinant monoclonal antibody (mAb) consisting of variable regions from a mouse IgG mAb specific for the binding subunit of Shiga toxin 1 (Stx1) and the Fc region of mouse IgA. Here we produced a secretory form of the recombinant IgA (S-hyIgA) with transgenic Arabidopsis thaliana plant. All the S-hyIgA cDNAs (heavy, light, J chain and secretory component) were expressed under the control of a bidirectional promoter of a chlorophyll a/b-binding protein of A. thaliana without using a viral promoter. The plant-based S-hyIgA exhibited antigen binding, and was modified with plant-specific N-linked sugar chains. The Ig heavy chain and secretory components were observed in an intracellular protein body-like structure of the transgenic leaves on immuno-electron microscopy. An extract of the transgenic leaves neutralized the cytotoxicity of Stx1 toward butyrate-treated Caco-2 cells, a human colon carcinoma cell line. These results will contribute to the development of edible therapeutic antibodies such as those for the treatment of mucosal infection.
A highly efficient and convenient method for the synthesis of 6-aryl-1,2,3-triazine-4-carboxylate esters has been developed using readily accessible ( Z)-4-aryl-2,4-diazido-2-alkenoates. This reaction is performed under mildly basic conditions without the assistance of any transition metals or strong acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.