The phytophagous spider mites Tetranychus kanzawai and Tetranychus urticae (Acari: Tetranychidae) can be as small as < 0.5 mm; thus, they are often incidentally consumed along with food plant leaves by voracious lepidopteran larvae (hereafter, ‘caterpillars’; Shirotsuka and Yano, 2012). Therefore, the ability to avoid such intraguild predation should confer a selective advantage to mites. We experimentally demonstrated that adult females of both mite species avoided settling on food plant leaves with traces of all tested caterpillar species (Bombyx mori, Papilio xuthus, Spodoptera litura, and Theretra oldenlandiae). We examined additional interactions using B. mori and T. kanzawai and found that B. mori trace avoidance by T. kanzawai lasted for more than 48 h. Tetranychus kanzawai also avoided B. mori traces on plant stems, along which mites access leaves. Moreover, T. kanzawai avoided acetone extracts of B. mori traces applied to filter paper, indicating that chemical substances of caterpillar traces are responsible for the avoidance. This study is the first demonstration of a repellent effect of herbivore trace chemicals on heterospecific herbivores. Although spider mites have developed resistance against many synthetic pesticides (Attia et al., 2013; Van Leeuwen et al., 2010), this study showed the potential of using natural compounds simulating caterpillar traces in repelling spider mites from agricultural crops.
The phytophagous spider mites Tetranychus kanzawai and Tetranychus urticae can be as small as < 0.5 mm; thus, they are often incidentally consumed along with food plant leaves by voracious lepidopteran larvae (hereafter, ‘caterpillars’). Therefore, the ability to avoid such intraguild predation should confer a selective advantage to mites. We experimentally demonstrated that adult females of both mite species avoided settling on food plant leaves with traces of all tested caterpillar species (Bombyx mori, Papilio xuthus, Spodoptera litura and Theretra oldenlandiae). We examined additional interactions using B. mori and T. kanzawai and found that B. mori trace avoidance by T. kanzawai lasted for more than 48 h. Tetranychus kanzawai also avoided B. mori traces on plant stems, along which mites access leaves. Moreover, T. kanzawai avoided acetone extracts of B. mori traces applied to filter paper, indicating that chemical substances of caterpillar traces are responsible for the avoidance. This study is the first demonstration of a repellent effect of herbivore trace chemicals on heterospecific herbivores. Although spider mites have developed resistance against many synthetic pesticides, these results predict that natural compounds simulating caterpillar traces may repel spider mites from agricultural crops.
The phytophagous spider mites Tetranychus kanzawai and Tetranychus urticae can be as small as <0.5 mm; thus, they are often incidentally consumed along with food plant leaves by voracious lepidopteran larvae (hereafter, ‘caterpillars’). Therefore, the ability to avoid such intraguild predation should confer a selective advantage to mites. We experimentally demonstrated that adult females of both mite species avoided settling on food plant leaves with traces of all tested caterpillar species (Bombyx mori, Papilio xuthus, Spodoptera litura and Theretra oldenlandiae). We examined additional interactions using B. mori and T. kanzawai and found that B. mori trace avoidance by T. kanzawailasted for more than 48 h. Tetranychus kanzawai also avoided B. moritraces on plant stems, along which mites access leaves. Moreover, T. kanzawai avoided acetone extracts of B. mori traces applied to filter paper, indicating that chemical substances of caterpillar traces are responsible for the avoidance. This study is the first demonstration of a repellent effect of herbivore trace chemicals on heterospecific herbivores. Although spider mites have developed resistance against many synthetic pesticides, these results predict that natural compounds simulating caterpillar traces may repel spider mites from agricultural crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.