Background. Hot water extract of Sasa albomarginata (Kumazasa) leaves is commercially available and used as a dietary supplement or skincare cream. The extract possesses anti-inflammatory activity on the mouse atopic dermatitis model. To elucidate the mechanism of in vivo activity, we have studied the cellular anti-inflammatory and antioxidant activities of the extract and its constituents. Methods. Secretion of mouse and human IL-6 was measured by ELISA. ROS production was measured by a fluorescent reagent. Ultrahigh performance liquid chromatography (UHPLC)/MS was used for the ingredient analysis. Results. The Sasa albomarginata extract inhibited inflammatory mediators such as LPS-induced NO, IL-6, and ROS production in mouse monocyte leukemia RAW264.7 cells. It also inhibited iNOS, IL-6, and IL-1β expressions. Moreover, it inhibited LPS-induced IL-6 expression and production in human monocyte leukemia THP-1 cells differentiated into macrophages. The HPLC analysis of the extract revealed the existence of coumaric acid, ferulic acid, and coumaric acid methyl ester. Coumaric acid methyl ester but not coumaric acid or ferulic acid inhibited LPS-induced NO, IL-6, and ROS production in RAW264.7 cells and IL-6 production in differentiated THP-1 cells. Conclusion. The hot water extract of Sasa albomarginata leaves and one of its constituents possess cellular anti-inflammatory and antioxidant activities.
Endometriosis is initiated by the movement of endometrial cells in the uterus to the fallopian tubes, the ovaries and the peritoneal cavity after the shedding of the uterus lining. To cause endometriosis, it is often necessary for these endometrial cells to migrate, invade and grow at the secondary site. In the present study, immortalized human endometriosis stromal cells (HESC) were employed to look for the inhibitors of migration and invasion. Using a chemical library of bioactive metabolites, it was found that an NF-κB inhibitor, DHMEQ, inhibited the migration and invasion of HESC. Both whole-genome array and metastasis PCR array analyses suggested the involvement of myosin light chain kinase (MLCK) in the mechanism of inhibition. DHMEQ was confirmed to inhibit the expression of MLCK and small inhibitory RNA knockdown of MLCK reduced cellular migration and invasion. The addition of DHMEQ to the knockdown cells did not further inhibit migration and invasion. DHMEQ is particularly effective in suppressing disease models by intraperitoneal (IP) administration and this therapy is being developed for the treatment of inflammation and cancer. DHMEQ IP therapy may also be useful for the treatment of endometriosis.
Safe and effective nonsteroidal anti-inflammatory drugs are needed. Meanwhile, addition of amino acids to cultures of microorganisms is likely to increase the possibility of novel secondary metabolite isolation. In the course of screening for antiinflammatory agents using cellular lipopolysaccharide (LPS)induced nitric oxide (NO) production, two new related compounds with the myceliothermophin structure from a methionine-enriched culture of Myceliophthora thermophila ATCC 42464 were isolated. The new compounds have an additional methylthio group on the myceliothermophin structure and were named myceliostatins A and B. Both compounds inhibited LPS-induced NO production at nontoxic concentrations in macrophage-like mouse monocytic leukemia RAW264.7 cells. Myceliostatin B inhibited the expression of LPS-induced iNOS, IL-6, and IL-1β and the upstream NF-κB activity in situ and in vitro. Finally, it was found to inhibit NF-κB binding to DNA in the reconstruction system with purified p65. Myceliostatin B also inhibited LPS-induced reactive oxygen species (ROS) production. Thus, myceliostatin B, a novel compound derived from M. thermophila, was found to be a new anti-inflammatory and antioxidant compound directly inhibiting NF-κB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.