Off-flavor in drinking water can be caused by transformation products (TPs) generated from organic compounds, such as amino acids, present during chlorination. However, the contributions of many of these TPs to overall off-flavor have not been quantified, mainly because the lack of appropriate chemical standards prevents sensory evaluation by means of a conventional flask test. In the present study, we used gas chromatography-mass spectrometry-olfactometry (GC-MS-O) to identify compounds responsible for the off-flavor generated by chlorination of an aqueous solution of the amino acid phenylalanine, and we propose a sensory evaluation procedure for quantification of the contributions of the identified TPs to the overall off-flavor, regardless of the availability of chemical standards of the TPs. GC-MS-O revealed that two TPs, N-chlorophenylacetaldimine and 2-chloro-2-phenylacetaldehyde, for which chemical standards are not commercially available, were the main components responsible for the off-flavor of the chlorinated solution. By using a sensory evaluation procedure involving a combination of GC-MS-O and a conventional flask test, we quantified the contributions of TPs to the overall off-flavor of the chlorinated solution. Approximately 60% of the off-flavor was attributable to free chlorine (13%), 2-chloro-2-phenylacetaldehyde (13%), trichloramine (12%) phenylacetaldehyde (11%) phenylacetonitrile (8%), and N-chlorophenylacetaldimine (2%). Treatment with powdered activated carbon (PAC) removed the off-flavor. Experiments with chlorination of N-labeled phenylalanine suggested that PAC reductively decomposed trichloramine into N gas and adsorbed all of the other identified TPs. Superfine PAC (median diameter, 0.7 μm) removed the off-flavor more rapidly than normal-size PAC (median diameter, 8.0 μm).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.