Gold nanoparticles (GNPs), which are generally thought to be bio-inert and non-cytotoxic, have become one of the most ideal nanomaterials for medical applications. Once engulfed by phagocytes, the immunological effects of GNPs are still of concern and require detailed investigation. Therefore, this study explored the immunological significance of GNPs on TLR-mediated innate immunity in murine macrophages. GNP causes specific inhibition of TLR9 (CpG oligodeoxynucleotides; CpG-ODNs) signal in macrophages. The impaired CpG-ODN–induced TNF-α production is GNP concentration- and size-dependent in murine Raw264.7 cells: a GNP of 4 nm in size is more potent than a GNP of 11, 19, 35, or 45 nm in size. Consistent with cytokine inhibition, the CpG-ODN–induced phosphorylation of NF-κB and JNK as well as NF-κB activation are suppressed by GNPs. GNPs accumulate in lysosomes after phagocytosis and also increase TLR9-associated lysosomal cathepsin expression and activities, but this is irrelevant to TLR9 inhibition by GNPs in our studies. In addition, GNPs affected TLR9 translocation in response to CpG-ODNs and to phagosomes. Further exploring how GNPs inhibited TLR9 function, we found that GNPs could bind to high-mobility group box-1 (which is involved in the regulation of TLR9 signaling) inside the lysosomes. The current studies demonstrate that size-dependent inhibition of TLR9 function by GNP may be attributed to its binding to high-mobility group box-1.
i Group A streptococcus (GAS) infection may cause severe life-threatening diseases, including necrotizing fasciitis and streptococcal toxic shock syndrome. Despite the availability of effective antimicrobial agents, there has been a worldwide increase in the incidence of invasive GAS infection. Kallistatin (KS), originally found to be a tissue kallikrein-binding protein, has recently been shown to possess anti-inflammatory properties. However, its efficacy in microbial infection has not been explored. In this study, we transiently expressed the human KS gene by hydrodynamic injection and investigated its anti-inflammatory and protective effects in mice via air pouch inoculation of GAS. The results showed that KS significantly increased the survival rate of GAS-infected mice. KS treatment reduced local skin damage and bacterial counts compared with those in mice infected with GAS and treated with a control plasmid or saline. While there was a decrease in immune cell infiltration of the local infection site, cell viability and antimicrobial factors such as reactive oxygen species actually increased after KS treatment. The efficiency of intracellular bacterial killing in neutrophils was directly enhanced by KS administration. Several inflammatory cytokines, including tumor necrosis factor alpha, interleukin 1, and interleukin 6, in local infection sites were reduced by KS. In addition, KS treatment reduced vessel leakage, bacteremia, and liver damage after local infection. Therefore, our study demonstrates that KS provides protection in GAS-infected mice by enhancing bacterial clearance, as well as reducing inflammatory responses and organ damage.
IntroductionCommunity-acquired pneumonia (CAP) requiring intensive care unit (ICU) treatment commonly causes acute respiratory failure with high mortality. Kallistatin, an endogenous tissue kallikrein inhibitor, has been reported to be protective in various human diseases. The aim of this study was to assess the correlations of kallistatin with other biomarkers and to determine whether kallistatin levels have a prognostic value in severe CAP.MethodsPlasma samples and clinical data were prospectively collected from 54 patients with severe CAP requiring ICU admission. Seventeen healthy control subjects were included for comparison. Plasma kallistatin, kallikrein, and other biomarkers of inflammation (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-8, C-reactive protein (CRP)), and anti-coagulation (protein C, anti-thrombin III) were measured on days 1 and 4 of ICU admission. Comparison between survivors (n = 41) and nonsurvivors (n = 13) was performed.ResultsPlasma kallistatin was significantly consumed in severe CAP patients compared with healthy individuals. Lower day 1 kallistatin levels showed a strong trend toward increased mortality (P = 0.018) and higher day 1 CURB-65 scores (P = 0.004). Plasma kallistatin levels on day 1 of ICU admission were significantly decreased in patients who developed septic shock (P = 0.017) and who had acute respiratory distress syndrome (P = 0.044). In addition, kallistatin levels were positively correlated with anti-thrombin III and protein C and inversely correlated with IL-1β, IL-6, and CRP levels. In a multivariate logistic regression analysis, higher day 1 CURB-65 scores were independent predictors of mortality (odds ratio = 29.9; P = 0.009). Also, higher day 1 kallistatin levels were independently associated with a decreased risk of death (odds ratio, 0.1) with a nearly significant statistical difference (P = 0.056). Furthermore, we found that a cutoff level of 6.5 μg/ml of day 1 kallistatin determined by receiver operating characteristic curves could be used to distinguish between patients who survived in 60 days and those who did not.ConclusionsThese results suggest that kallistatin may serve as a novel marker for severe CAP prognosis and may be involved in the pathogenesis of CAP through antiinflammatory and anticoagulation effects.See related letter by Katz et al., http://ccforum.com/content/17/2/429
Group A streptococcus (GAS) is an important human pathogen, and its invasion via blood vessels is critically important in serious events such as bacteremia or multiorgan failure. Although GAS was identified as an extracellular bacterium, the internalization of GAS into nonphagocytic cells may provide a strategy to escape from immune surveillance and antibiotic killing. However, GAS has also been reported to induce autophagy and is efficiently killed within lysosome-fused autophagosomes in epithelial cells. In this study, we show that GAS can replicate in endothelial cells and that streptolysin O is required for GAS growth. Bacterial replication can be suppressed by altering GAS gene expression in an acidic medium before internalization into endothelial cells. The inhibitory effect on GAS replication can be reversed by treatment with bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase. Compared with epithelial cells in which acidification causes autophagy-mediated clearance of GAS, there was a defect in acidification of GAS-containing vesicles in endothelial cells. Consequently, endothelial cells fail to maintain low pH in GAS-containing autophagosomes, thereby permitting GAS replication inside LAMP-1- and LC3-positive vesicles. Furthermore, treatment of epithelial cells with bafilomycin A1 resulted in defective GAS clearance by autophagy, with subsequent bacterial growth intracellularly. Therefore, low pH is a key factor for autophagy-mediated suppression of GAS growth inside epithelial cells, while defective acidification of GAS-containing vesicles results in bacterial growth in endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.