Platelet function mediates both beneficial and harmful effects on human health, but few genes are known to contribute to variability in the process. We tested association of 2.5 million SNPs with platelet aggregation responses to 3 agonists (ADP, epinephrine and collagen) in two European-ancestry cohorts (N ≤ 2,753 in the Framingham Heart Study, N ≤ Users may view, print, copy, download and text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined ∼18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 × 10) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 × 10). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2).
Background-Duchenne muscular dystrophy (DMD) is an inherited disease characterized by early onset of skeletal muscle degeneration and progressive weakness. Although dilated cardiomyopathy may occur during adolescence, it is often undetected early in its course because of physical inactivity and generalized debilitation. The purpose of this study was to apply the technique of cardiac magnetic resonance (CMR) tagging to detect occult cardiac dysfunction in young subjects with DMD by measuring myocardial strain and torsion. Methods and Results-Thirteen DMD pediatric subjects without clinically apparent heart disease and 9 age-matched healthy males were recruited. Each was scanned on a 1.5-T clinical scanner to acquire contiguous short-axis planes from the apex to the mitral valve plane and then 3 tagged images at base, midventricle, and apex. Global and segmental myocardial net twist and circumferential strain were computed with the use of 2D homogeneous strain analysis. Ventricular torsion was computed by normalizing net twist by the distance from apex to mitral valve plane. DMD patients exhibited normal left ventricular volumes and ejection fractions but manifested reduced midventricular and basal cross-sectional global circumferential strain compared with the reference group (PϽ0.005). These alterations also appeared in segmental analyses in the septal, anterior, lateral, and inferior walls (PϽ0.05). Conclusions-In patients predisposed to cardiomyopathies because of dystrophinopathy, occult regional cardiac dysfunction can be diagnosed with CMR tagging. This method of strain imaging analysis may offer a sensitive approach for delineating the presence and progression of cardiovascular disease and for assessing therapies designed to modulate the onset and course of heart failure.
Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNAþ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p % 5EÀ04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p % 1EÀ03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p % 1EÀ06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis-and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.