Epithelial-to-mesenchymal transition (EMT) is a developmental process important for cell fate determination. Fibroblasts, a product of EMT, can be reset into induced pluripotent stem cells (iPSCs) via exogenous transcription factors but the underlying mechanism is unclear. Here we show that the generation of iPSCs from mouse fibroblasts requires a mesenchymal-to-epithelial transition (MET) orchestrated by suppressing pro-EMT signals from the culture medium and activating an epithelial program inside the cells. At the transcriptional level, Sox2/Oct4 suppress the EMT mediator Snail, c-Myc downregulates TGF-beta1 and TGF-beta receptor 2, and Klf4 induces epithelial genes including E-cadherin. Blocking MET impairs the reprogramming of fibroblasts whereas preventing EMT in epithelial cells cultured with serum can produce iPSCs without Klf4 and c-Myc. Our work not only establishes MET as a key cellular mechanism toward induced pluripotency, but also demonstrates iPSC generation as a cooperative process between the defined factors and the extracellular milieu. PAPERCLIP:
MicroRNAs (miRNAs) are emerging critical regulators of cell function that frequently reside in clusters throughout the genome. They influence a myriad of cell functions, including the generation of induced pluripotent stem cells, also termed reprogramming. Here, we have successfully delivered entire miRNA clusters into reprogramming fibroblasts using retroviral vectors. This strategy avoids caveats associated with transient transfection of chemically synthesized miRNA mimics. Overexpression of 2 miRNA clusters, 106a-363 and in particular 302-367, allowed potent increases in induced pluripotent stem cell generation efficiency in mouse fibroblasts using 3 exogenous factors (Sox2, Klf4, and Oct4). Pathway analysis highlighted potential relevant effectors, including mesenchymal-to-epithelial transition, cell cycle, and epigenetic regulators. Further study showed that miRNA cluster 302-367 targeted TGF receptor 2, promoted increased E-cadherin expression, and accelerated mesenchymal-to-epithelial changes necessary for colony formation. Our work thus provides an interesting alternative for improving reprogramming using miRNAs and adds new evidence for the emerging relationship between pluripotency and the epithelial phenotype.Pluripotent and differentiated cell fates are determined at least in part by tissue-specific transcription factors that impose a concrete genetic program (1). In addition to coding RNAs, noncoding RNAs (2) are an integral part of the genetic programs that specify cell fate, regulating, for example, the expression of key cell-specific transcription factors (3) and chromatin stability (4) and therefore cell-specific properties. miRNAs 4 are 21-23-nucleotide-long noncoding RNAs that, by inducing degradation and/or preventing translation of target mRNAs (2), modulate a plethora of cell functions, including those related to ESC self-renewal/differentiation (5) and cell cycle progression (6). In this context, it is not only expected that miRNAs can enhance reprogramming but also tempting to speculate that, in the right combination, they might be able to reset somatic cells into iPSCs without added factors. Blelloch and co-workers (7) observed that, in the original mixture devised by Takahashi and Yamanaka (1), c-Myc can be substituted by components of the miR-290 cluster or by miR-302d. Elimination of c-Myc is desirable because it reduces tumor formation but has a negative effect on reprogramming. However, use of chemically synthesized oligonucleotides involves repeated transfection, and this implies a transient effect, toxicity, and an inability to pool large numbers of miRNAs without reducing their concentration beyond an optimal threshold. The latter is a concern because many ESC-specific miRNAs reside clustered within the same genome locus, and one could argue that delivering some or all these miRNA clusters together should be optimal for producing iPSCs. In this regard, we demonstrate herein that stable overexpression of entire endogenous miRNA clusters can potently improve reprogramming and be a...
microRNAs play an important roles in cell growth, differentiation, proliferation and apoptosis. They can function either as tumor suppressors or oncogenes. We found that the overexpression of miR-192 inhibited cell proliferation in A549, H460 and 95D cells, and inhibited tumorigenesis in a nude mouse model. Both caspase-7 and the PARP protein were activated by the overexpression of miR-192, thus suggesting that miR-192 induces cell apoptosis through the caspase pathway. Further studies showed that retinoblastoma 1 (RB1) is a direct target of miR-192. Over-expression of miR-192 decreased RB1 mRNA and protein levels and repressed RB1-3′-UTR reporter activity. Knockdown of RB1 using siRNA resulted in a similar cell morphology as that observed for overexpression of miR-192. Additionally, RB1-siRNA treatment inhibited cell proliferation and induced cell apoptosis in lung cancer cells. Analysis of miRNA expression in clinical samples showed that miR-192 is significantly downregulated in lung cancer tissues compared to adjacent non-cancerous lung tissues. In conclusion, our results demonstrate that miR-192 is a tumor suppressor that can target the RB1 gene to inhibit cell proliferation and induce cell apoptosis in lung cancer cells. Furthermore, miR-192 was expressed at low levels in lung cancer samples, indicating that it might be a promising therapeutic target for lung cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.