Background
The endoglycosidase heparanase which degrades heparan sulfate proteoglycans, exerts a pro-inflammatory mediator in various inflammatory disorders. However, the function and underlying mechanism of heparanase in acute pancreatitis remain poorly understood. Here, we investigated the interplay between heparanase and the gut microbiota in the development of acute pancreatitis.
Methods
Acute pancreatitis was induced in wild-type and heparanase-transgenic mice by administration of caerulein. The differences in gut microbiota were analyzed by 16S ribosomal RNA sequencing. Antibiotic cocktail experiment, fecal microbiota transplantation, and cohousing experiments were used to assess the role of gut microbiota.
Results
As compared with wild-type mice, acute pancreatitis was exacerbated in heparanase-transgenic mice. Moreover, the gut microbiota differed between heparanase-transgenic and wild-type mice. Heparanase exacerbated acute pancreatitis in a gut microbiota-dependent manner. Specially, the commensal Parabacteroides contributed most to distinguish the differences between wild-type and heparanase-transgenic mice. Administration of Parabacteroides alleviated acute pancreatitis in wild-type and heparanase-transgenic mice. In addition, Parabacteroides produced acetate to alleviate heparanase-exacerbated acute pancreatitis through reducing neutrophil infiltration.
Conclusions
The gut–pancreas axis played an important role in the development of acute pancreatitis and the acetate produced by Parabacteroides may be beneficial for acute pancreatitis treatment.
Hepatocellular carcinoma (HCC) is the fifth-most common cancer and third leading cause of cancer-related deaths worldwide. Increasing evidence indicates that dysregulation of microRNAs is often observed in HCC, and has been extensively investigated in terms of cancer formation, progression, diagnosis, therapy, and prognosis. Recently, microRNA-326 (miR-326) has been demonstrated to play important roles in multiple types of human cancer. However, the expression pattern, clinical significance, roles and regulatory mechanisms of miR-326 in HCC have yet to be elucidated. In this study, miR-326 was frequently downregulated in HCC tissues and cell lines. Low miR-326 expression was significantly associated with the TNM stage, differentiation and lymph node metastasis of HCC patients. Further functional assays demonstrated that the recovered miR-326 expression inhibited HCC cell proliferation and invasion and activated cell apoptosis in vitro. In addition, LIM and SH3 protein 1 (LASP1) was identified as a direct target gene of miR-326 in HCC. Furthermore, LASP1 was upregulated in HCC tissues and cell lines. The expression level of LASP1 mRNA was inversely correlated with that of miR-326 in HCC tissues. Moreover, LASP1 silencing elicited effects similar to miR-326 overexpression on HCC cells, and LASP1 upregulation markedly reversed the effects of miR-326 overexpression on HCC cells. These results revealed that miR-326 suppressed the progression of HCC by directly targeting LASP1. Therefore, miR-326 may be used as a potential therapeutic target for the treatment of patients with HCC.
The gut microbiota plays a crucial role in the development of the immune system and confers benefits or disease susceptibility to the host. Emerging studies have indicated that the gut microbiota could affect pulmonary health and disease through cross-talk between the gut microbiota and the lungs. Gut microbiota dysbiosis could lead to acute or chronic lung disease, such as asthma, tuberculosis and lung cancer. In addition, the composition of the gut microbiota may be associated with different lung diseases, the prevalence of which also vary by age. Modulation of the gut microbiota through short-chain fatty acids, probiotics and micronutrients may present potential therapeutic strategies to protect against lung diseases. In this review, we will provide an overview of the cross-talk between the gut microbiota and the lungs as well as elucidate the underlying pathogenesis or potential therapeutic strategies of some lung diseases from the point of view of the gut microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.