Photothermal ablation (PTA) therapy has a great potential to revolutionize conventional therapeutic approaches for cancers, but it has been limited by difficulties in obtaining biocompatible photothermal agents that have low cost, small size (<100 nm), and high photothermal conversion efficiency. Herein, we have developed hydrophilic plate-like Cu(9)S(5) nanocrystals (NCs, a mean size of ∼70 nm × 13 nm) as a new photothermal agent, which are synthesized by combining a thermal decomposition and ligand exchange route. The aqueous dispersion of as-synthesized Cu(9)S(5) NCs exhibits an enhanced absorption (e.g., ∼1.2 × 10(9) M(-1) cm(-1) at 980 nm) with the increase of wavelength in near-infrared (NIR) region, which should be attributed to localized surface plasmon resonances (SPR) arising from p-type carriers. The exposure of the aqueous dispersion of Cu(9)S(5) NCs (40 ppm) to 980 nm laser with a power density of 0.51 W/cm(2) can elevate its temperature by 15.1 °C in 7 min; a 980 nm laser heat conversion efficiency reaches as high as 25.7%, which is higher than that of the as-synthesized Au nanorods (23.7% from 980 nm laser) and the recently reported Cu(2-x)Se NCs (22% from 808 nm laser). Importantly, under the irradiation of 980 nm laser with the conservative and safe power density over a short period (∼10 min), cancer cells in vivo can be efficiently killed by the photothermal effects of the Cu(9)S(5) NCs. The present finding demonstrates the promising application of the Cu(9)S(5) NCs as an ideal photothermal agent in the PTA of in vivo tumor tissues.
Photothermal nanomaterials have recently attracted significant research interest due to their potential applications in biological imaging and therapeutics. However, the development of small-sized photothermal nanomaterials with high thermal stability remains a formidable challenge. Here, we report the rational design and synthesis of ultrasmall (<10 nm) Fe3O4@Cu2-xS core-shell nanoparticles, which offer both high photothermal stability and superparamagnetic properties. Specifically, these core-shell nanoparticles have proven effective as probes for T2-weighted magnetic resonance imaging and infrared thermal imaging because of their strong absorption at the near-infrared region centered around 960 nm. Importantly, the photothermal effect of the nanoparticles can be precisely controlled by varying the Cu content in the core-shell structure. Furthermore, we demonstrate in vitro and in vivo photothermal ablation of cancer cells using these multifunctional nanoparticles. The results should provide improved understanding of synergistic effect resulting from the integration of magnetism with photothermal phenomenon, important for developing multimode nanoparticle probes for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.