Abstract: Border Gateway Protocol (BGP) is utilized to send and receive data packets over the internet. Over the years, this protocol has suffered from some massive hits, caused by worms, such as Nimda, Slammer, Code Red etc., hardware failures, and/or prefix hijacking. This caused obstruction of services to many. However, Identification of anomalous messages traversing over BGP allows discovering of such attacks in time. In this paper, a Machine Learning approach has been applied to identify such BGP messages. Principal Component Analysis technique was applied for reducing dimensionality up to 2 components, followed by generation of Decision Tree, Random Forest, AdaBoost and GradientBoosting classifiers. On fine tuning the parameters, the random forest classifier generated an accuracy of 97.84%, the decision tree classifier followed closely with an accuracy of 97.38%. The GradientBoosting Classifier gave an accuracy of 95.41% and the AdaBoost Classifier gave an accuracy of 94.43%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.