A series of plasmonic Ag-TiO2/H3PW12O40 composite films were fabricated and immobilized by validated preparation technique. The chemical composition and phase, optical, SPR effect and pore-structure properties together with the morphology of as-prepared composite film are well-characterized. The multi-synergies of as-prepared composite films were gained by combined action of electron-capture action via H3PW12O40, visible-response induced by Ag, and Schottky-junction formed between TiO2-Ag. Under simulated sunlight, the maximal K
app of o-chlorophenol (o-CP) reached 0.0075 min−1 which was 3.95-fold larger than that of TiO2 film, while it was restrained obviously under acid condition. In the photocatalytic degradation process, ·OH and ·O2
− attacked preferentially ortho and para position of o-CP molecule, and accordingly the specific degradation pathways were speculated. The novel composite film exhibited an excellent applicability due to self-regeneration of H3PW12O40, well-protection of metal Ag° and favorable immobilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.