Eukaryotic gene transcription is regulated by a large cohort of chromatin associated proteins, and inferring their differential binding sites between cellular contexts requires a rigorous comparison of the corresponding ChIP-seq data. We present MAnorm2, a new computational tool for quantitatively comparing groups of ChIP-seq samples. MAnorm2 uses a hierarchical strategy to normalize ChIP-seq data and then performs differential analysis by assessing within-group variability of ChIP-seq signals under an empirical Bayes framework. In this framework, MAnorm2 considers the abundance of differential ChIP-seq signals between groups of samples and the possibility of different within-group variability between groups. When samples in each group are biological replicates, MAnorm2 can reliably identify differential binding events even between highly similar.
Background: Gene transcription in eukaryotic cells is collectively controlled by a large panel of chromatin associated proteins and ChIP-seq is now widely used to locate their binding sites along the whole genome. Inferring the differential binding sites of these proteins between biological conditions by comparing the corresponding ChIP-seq samples is of general interest, yet it is still a computationally challenging task. Results: Here, we briefly review the computational tools developed in recent years for differential binding analysis with ChIP-seq data. The methods are extensively classified by their strategy of statistical modeling and scope of application. Finally, a decision tree is presented for choosing proper tools based on the specific dataset. Conclusions: Computational tools for differential binding analysis with ChIP-seq data vary significantly with respect to their applicability and performance. This review can serve as a practical guide for readers to select appropriate tools for their own datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.