Minor amputations are performed in a large proportion of patients with diabetic foot ulcers (DFU) and early identification of the outcome of minor amputations facilitates medical decision-making and ultimately reduces major amputations and deaths. However, there are currently no clinical predictive tools for minor amputations in patients with DFU. We aim to establish a predictive model based on machine learning to quickly identify patients requiring minor amputation among newly admitted patients with DFU. Overall, 362 cases with University of Texas grade (UT) 3 DFU were screened from tertiary care hospitals in East China. We utilized the synthetic minority oversampling strategy to compensate for the disparity in the initial dataset. A univariable analysis revealed nine variables to be included in the model: random blood glucose, years with diabetes, cardiovascular diseases, peripheral arterial diseases, DFU history, smoking history, albumin, creatinine, and C-reactive protein. Then, risk prediction models based on five machine learning algorithms: decision tree, random forest, logistic regression, support vector machine, and extreme gradient boosting (XGBoost) were independently developed with these variables. After evaluation, XGBoost earned the highest score (accuracy 0.814, precision 0.846, recall 0.767, F1-score 0.805, and AUC 0.881). For convenience, a web-based calculator based on our data and the XGBoost algorithm was established (https://dfuprediction.azurewebsites.net/). These findings imply that XGBoost can be used to develop a reliable prediction model for minor amputations in patients with UT3 DFU, and that our online calculator will make it easier for clinicians to assess the risk of minor amputations and make proactive decisions.
Background Early detection of hard-to-heal diabetic foot ulcers (DFUs) is vital to prevent a poor prognosis. The purpose of this work was to employ clinical characteristics to create an optimal predictive model of hard-to-heal DFUs (failing to decrease by >50% at 4 weeks) based on machine learning algorithms. Methods A total of 362 DFU patients hospitalized in two tertiary hospitals in eastern China were enrolled in this study. The training dataset and validation dataset were split at a ratio of 7:3. Univariate logistic analysis and clinical experience were utilized to screen clinical characteristics as predictive features. The following six machine learning algorithms were used to build prediction models for differentiating hard-to-heal DFUs: support vector machine, the naïve Bayesian (NB) model, k-nearest neighbor, general linear regression, adaptive boosting, and random forest. Five cross-validations were employed to realize the model’s parameters. Accuracy, precision, recall, F1-scores, and AUCs were utilized to compare and evaluate the models’ efficacy. On the basis of the best model identified, the significance of each characteristic was evaluated, and then an online calculator was developed. Results Independent predictors for model establishment included sex, insulin use, random blood glucose, wound area, diabetic retinopathy, peripheral arterial disease, smoking history, serum albumin, serum creatinine, and C-reactive protein. After evaluation, the NB model was identified as the most generalizable model, with an AUC of 0.864, a recall of 0.907, and an F1-score of 0.744. Random blood glucose, C-reactive protein, and wound area were determined to be the three most important influencing factors. A corresponding online calculator was created ( https://predicthardtoheal.azurewebsites.net/ ). Conclusion Based on clinical characteristics, machine learning algorithms can achieve acceptable predictions of hard-to-heal DFUs, with the NB model performing the best. Our online calculator can assist doctors in identifying the possibility of hard-to-heal DFUs at the time of admission to reduce the likelihood of a dismal prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.