Heat conversion gets a power boost
Thermoelectric materials convert waste heat into electricity, but often achieve high conversion efficiencies only at high temperatures. Zhao
et al.
tackle this problem by introducing small amounts of sodium to the thermoelectric SnSe (see the Perspective by Behnia). This boosts the power factor, allowing the material to generate more energy while maintaining good conversion efficiency. The effect holds across a wide temperature range, which is attractive for developing new applications.
Science
, this issue p.
141
; see also p.
124
We report a significant enhancement of the thermoelectric performance of p-type SnTe over a broad temperature plateau with a peak ZT value of ∼1.4 at 923 K through In/Cd codoping and a CdS nanostructuring approach. Indium and cadmium play different but complementary roles in modifying the valence band structure of SnTe. Specifically, In-doping introduces resonant levels inside the valence bands, leading to a considerably improved Seebeck coefficient at low temperature. Cd-doping, however, increases the Seebeck coefficient of SnTe remarkably in the mid- to high-temperature region via a convergence of the light and heavy hole bands and an enlargement of the band gap. Combining the two dopants in SnTe yields enhanced Seebeck coefficient and power factor over a wide temperature range due to the synergy of resonance levels and valence band convergence, as demonstrated by the Pisarenko plot and supported by first-principles band structure calculations. Moreover, these codoped samples can be hierarchically structured on all scales (atomic point defects by doping, nanoscale precipitations by CdS nanostructuring, and mesoscale grains by SPS treatment) to achieve highly effective phonon scattering leading to strongly reduced thermal conductivities. In addition to the high maximum ZT the resultant large average ZT of ∼0.8 between 300 and 923 K makes SnTe an attractive p-type material for high-temperature thermoelectric power generation.
The broad-based implementation of thermoelectric materials in converting heat to electricity hinges on the achievement of high conversion efficiency. Here we demonstrate a thermoelectric figure of merit ZT of 2.5 at 923 K by the cumulative integration of several performance-enhancing concepts in a single material system. Using non-equilibrium processing we show that hole-doped samples of PbTe can be heavily alloyed with SrTe well beyond its thermodynamic solubility limit of <1 mol%. The much higher levels of Sr alloyed into the PbTe matrix widen the bandgap and create convergence of the two valence bands of PbTe, greatly boosting the power factors with maximal values over 30 μW cm−1 K−2. Exceeding the 5 mol% solubility limit leads to endotaxial SrTe nanostructures which produce extremely low lattice thermal conductivity of 0.5 W m−1 K−1 but preserve high hole mobilities because of the matrix/precipitate valence band alignment. The best composition is hole-doped PbTe–8%SrTe.
In this study, a series of GeMnTe (x = 0-0.21) compounds were prepared by a melting-quenching-annealing process combined with spark plasma sintering (SPS). The effect of alloying MnTe into GeTe on the structure and thermoelectric properties of GeMnTe is profound. With increasing content of MnTe, the structure of the GeMnTe compounds gradually changes from rhombohedral to cubic, and the known R3m to Fm-3m phase transition temperature of GeTe moves from 700 K closer to room temperature. First-principles density functional theory calculations show that alloying MnTe into GeTe decreases the energy difference between the light and heavy valence bands in both the R3m and Fm-3m structures, enhancing a multiband character of the valence band edge that increases the hole carrier effective mass. The effect of this band convergence is a significant enhancement in the carrier effective mass from 1.44 m (GeTe) to 6.15 m (GeMnTe). In addition, alloying with MnTe decreases the phonon relaxation time by enhancing alloy scattering, reduces the phonon velocity, and increases Ge vacancies all of which result in an ultralow lattice thermal conductivity of 0.13 W m K at 823 K. Subsequent doping of the GeMnTe compositions with Sb lowers the typical very high hole carrier concentration and brings it closer to its optimal value enhancing the power factor, which combined with the ultralow thermal conductivity yields a maximum ZT value of 1.61 at 823 K (for GeMnSbTe). The average ZT value of the compound over the temperature range 400-800 K is 1.09, making it the best GeTe-based thermoelectric material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.