Synaptic dysfunction and the loss of synapses are early pathological features of Alzheimer's disease (AD). Synapses are sites of high energy demand and extensive calcium fluctuations; accordingly, synaptic transmission requires high levels of ATP and constant calcium fluctuation. Thus, synaptic mitochondria are vital for maintenance of synaptic function and transmission through normal mitochondrial energy metabolism, distribution and trafficking, and through synaptic calcium modulation. To date, there has been no extensive analysis of alterations in synaptic mitochondria associated with amyloid pathology in an amyloid β (Aβ)-rich milieu. Here, we identified differences in mitochondrial properties and function of synaptic vs. nonsynaptic mitochondrial populations in the transgenic mouse brain, which overexpresses the human mutant form of amyloid precursor protein and Aβ. Compared with nonsynaptic mitochondria, synaptic mitochondria showed a greater degree of agedependent accumulation of Aβ and mitochondrial alterations. The synaptic mitochondrial pool of Aβ was detected at an age as young as 4 mo, well before the onset of nonsynaptic mitochondrial and extensive extracellular Aβ accumulation. Aβ-insulted synaptic mitochondria revealed early deficits in mitochondrial function, as shown by increased mitochondrial permeability transition, decline in both respiratory function and activity of cytochrome c oxidase, and increased mitochondrial oxidative stress. Furthermore, a low concentration of Aβ (200 nM) significantly interfered with mitochondrial distribution and trafficking in axons. These results demonstrate that synaptic mitochondria, especially Aβ-rich synaptic mitochondria, are more susceptible to Aβ-induced damage, highlighting the central importance of synaptic mitochondrial dysfunction relevant to the development of synaptic degeneration in AD.synaptic AB | mitochondrial trafficking | mitochondrial oxidative stress | mitochondrial dysfunction | synaptic injury B rain mitochondria are a mixture of synaptic and nonsynaptic mitochondria. Synaptic mitochondria differ from nonsynaptic mitochondria in size, motility, life span, and other properties. Synaptic mitochondria are energy warehouses that sustain the activity of neurons/synapses (1, 2). Synaptic mitochondria are synthesized in neuronal soma; they are then transported to nerve terminals (dendrites and axons), are distributed abundantly around synapses where mitochondria modulate calcium balance (3), and actively provide energy to fuel the synaptic function (4, 5). Synaptic mitochondria thus undergo constant activation to maintain synaptic function. Defects in synaptic mitochondria obviously compromise synaptic function (1, 6, 7), and synaptic mitochondria are vulnerable to accumulative damages. Multiple studies have shown that synaptic mitochondria undergo increased oxidation during aging (8, 9). In addition, synaptic mitochondria demonstrate higher levels of cyclophilin D (CypD), and are thereby more susceptible to calcium insult (10, 11). Given the impor...
The products of nonenzymatic glycation and oxidation of proteins and lipids, the advanced glycation end products (AGEs), accumulate in a wide variety of environments. AGEs may be generated rapidly or over long times stimulated by a range of distinct triggering mechanisms, thereby accounting for their roles in multiple settings and disease states. A critical property of AGEs is their ability to activate receptor for advanced glycation end products (RAGE), a signal transduction receptor of the immunoglobulin superfamily. It is our hypothesis that due to such interaction, AGEs impart a potent impact in tissues, stimulating processes linked to inflammation and its consequences. We hypothesize that AGEs cause perturbation in a diverse group of diseases, such as diabetes, inflammation, neurodegeneration, and aging. Thus, we propose that targeting this pathway may represent a logical step in the prevention/treatment of the sequelae of these disorders.
Microglia are critical for amyloid-beta peptide (Abeta)-mediated neuronal perturbation relevant to Alzheimer's disease (AD) pathogenesis. We demonstrate that overexpression of receptor for advanced glycation end products (RAGE) in imbroglio exaggerates neuroinflammation, as evidenced by increased proinflammatory mediator production, Abeta accumulation, impaired learning/memory, and neurotoxicity in an Abeta-rich environment. Transgenic (Tg) mice expressing human mutant APP (mAPP) in neurons and RAGE in microglia displayed enhanced IL-1beta and TNF-alpha production, increased infiltration of microglia and astrocytes, accumulation of Abeta, reduced acetylcholine esterase (AChE) activity, and accelerated deterioration of spatial learning/memory. Notably, introduction of a signal transduction-defective mutant RAGE (DN-RAGE) to microglia attenuates deterioration induced by Abeta. These findings indicate that RAGE signaling in microglia contributes to the pathogenesis of an inflammatory response that ultimately impairs neuronal function and directly affects amyloid accumulation. We conclude that blockade of microglial RAGE may have a beneficial effect on Abeta-mediated neuronal perturbation relevant to AD pathogenesis.-Fang, F., Lue, L.-F., Yan, S., Xu, H., Luddy, J. S., Chen, D., Walker, D. G., Stern, D. M., Yan, S., Schmidt, A. M., Chen, J. X., Yan, S. S. RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer's disease.
Intracellular amyloid- peptide (A) has been implicated in neuronal death associated with Alzheimer's disease. Although A is predominantly secreted into the extracellular space, mechanisms of A transport at the level of the neuronal cell membrane remain to be fully elucidated. We demonstrate that receptor for advanced glycation end products (RAGE) contributes to transport of A from the cell surface to the intracellular space. Mouse cortical neurons exposed to extracellular human A subsequently showed detectable peptide intracellularly in the cytosol and mitochondria by confocal microscope and immunogold electron microscopy. Pretreatment of cultured neurons from wild-type mice with neutralizing antibody to RAGE, and neurons from RAGE knockout mice displayed decreased uptake of A and protection from A-mediated mitochondrial dysfunction. A activated p38 MAPK, but not SAPK/JNK, and then stimulated intracellular uptake of A-RAGE complex. Similar intraneuronal co-localization of A and RAGE was observed in the hippocampus of transgenic mice overexpressing mutant amyloid precursor protein. These findings indicate that RAGE contributes to mechanisms involved in the translocation of A from the extracellular to the intracellular space, thereby enhancing A cytotoxicity.is a progressive neurodegenerative process characterized by senile plaques, neurofibrillary tangles, and neuronal loss (1, 2). Deposition of amyloid- peptide (A), a 39-43-amino acid peptide derived from the transmembrane amyloid precursor protein (APP), is found in extracellular senile plaque cores and is associated with neurodegeneration in later stages of AD. In contrast, recent studies suggest that accumulation of intraneuronal A may be an early event in the pathogenesis of AD (3-16). Addition of A to human neuronal-like cells caused significant mitochondrial damage (17). Furthermore, our recent study revealed that binding of A to A-binding alcohol dehydrogenase (ABAD) or cyclophilin D (10, 11) intracellularly triggered events leading to neuronal apoptosis through a mitochondrial pathway (12,13,18,19). However, mechanisms through which A produced at the plasma membrane and released into the extracellular space reaches the intracellular milieu remain to be elucidated.Receptor for advanced glycation end products (RAGE) is a multiligand receptor of the Ig superfamily of cell surface molecules (20)(21)(22). RAGE acts as a counter-receptor for several quite distinct classes of ligands, such as AGEs, S100/calgranulins, HMG1 (high mobility group 1 or amphoterin), and the family of crossed -sheet fibrils/macromolecular assemblies, which activate receptormediated signal transduction pathways. These ligand-receptor interactions are believed to exert pathogenic effects through sustained cellular perturbation in a range of chronic disorders, including the secondary complications of diabetes, inflammation, and neurodegenerative processes (23,24). RAGE, a cell surface binding site for A (25), is expressed at higher levels in an A-rich environment (...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.